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Abstract. The assessment and interpretation of the geodetic results regarding the 

detection of possible spatial displacements and the deformation parameters have to 

be combined with a realistic geophysical model for the area. Usually, this study is 

carried out by fitting the geodetic data to a polynomial function, which is consid-

ered sufficient to describe adequately the deformation pattern. In terms of the com-

putational steps needed, this polynomial fitting can be accomplished (i) simultane-

ously by the analysis of the geodetic observations, in a dynamic adjustment, (ii) 

non simultaneously, in a sequential approach of the dynamic adjustment or (iii) by 

a simple comparison of the results between two epochs. The main intention of this 

article is to give a short description of all methods just mentioned, summarizing the 

existing methodologies that appear in the geodetic literature for crustal deformation 

studies. Emphasis is given on the analysis of time-dependent GNSS networks and 

on the reference frame definition problem.  
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1.  Introduction 

 

Various geodetic methods for the extraction of displacements and deformation pa-

rameters are recognized as useful techniques in many geophysical studies. Within 

the last thirty years, many geodetic applications have been presented in the litera-

ture. All these applications are based on the use of repeated observations over the 

geodetic network (properly established in the areas under investigation) and on the 

analysis of the results between different epochs of observations by means of appro-

priate models.  

The assessment and interpretation of the geodetic results for the detection of possi-

ble spatial displacements and the deformation parameters have to be combined 

with a realistic geophysical model for the area. Usually, this study is carried out by 

fitting the geodetic data to a polynomial function, which is considered sufficient to 

describe adequately the deformation pattern. In terms of the computational steps 

needed, this polynomial fitting can be accomplished (i) simultaneously by the 



Time - dependent geodetic networks and the reference frame definition problem 267 
 

analysis of the geodetic observations, in a dynamic adjustment, (ii) non simultane-

ously, in a sequential approach of the dynamic adjustment or (iii) by a simple com-

parison of the results between two epochs. 

Depending upon the kind and nature of the geodetic data being used (e.g. original 

observations or coordinates from a network adjustment), the corresponding 

mathematical model may suffer from some specific problems, such as the inconsis-

tency of the reference frames, or the existence of non-positive covariance matrices. 

The main intention of this work is to give a short description of all methods just 

mentioned, laying the emphasis on the reference frame definition problem, or on 

the non-positive covariance matrix problem, by referring to the robust estimation 

technique in every case.  

The reference datum definition problem or datum problem or zero order design 

problem has received considerable attention since the pioneering work of Meissl 

(1965) and his famous “inner error theory” consisting in an instruction how to 

compute the suitable dispersion matrix of the point coordinates. Meissl’s method 

has been popularized by Blaha (1971) and Pope (1973) who develop a powerful 

method of evaluating the pseudoinverse matrix uses the so called “solution space”. 

The relation of various solutions to Meissl’s inner constraints has been established 

with the introduction of the S-transformation by Baarda (1973). Subsequently all 

methods have been described in full length by Grafarend and Schaffrin (1974, 

1976), Pelzer (1974), van Mierlo (1980), Koch (1982), Teunissen (1985). This 

problem dominated the geodetic literature in the 70s, although it still remains op-

portune in GNSS applications, as well as in the assessment of geodetic data for the 

detection of displacements and the estimation of deformation parameters. 

In time dependent geodetic network a “common” reference frame for all epochs is 

needed. The definition of the reference frame in each epoch is based on analogous 

to the Meissl constraints, which are introduced for the coordinate differences in 

time. This procedure, that has been proposed by Pelzer (1971) for the geodetic ap-

plications of deformation measurements, is a discrete approximation to the defini-

tion of the reference frame under time-continues data (Dermanis, 2002). In the case 

of single adjustment per epoch the constraints are incorporated as inner constraints 

on the unknown corrections of approximate coordinates, by using common ap-

proximate coordinates for all epochs. A different approach of alternative con-

straints in the deformation networks can be found in Prescott (1981), Darby (1982) 

and Segall and Matthews (1988). 

According to the geodetic literature there are three general methods, followed for 

the geodetic analysis of observations in time (Rossikopoulos, 2003, Dermanis and 

Kotsakis, 2006, Dermanis, 2009). We can call these methods: a) dynamic adjust-

ment – the generalized approach, b) dynamic adjustment – the sequential approach 

(or adjustment in steps) and the third, the most famous one, c) comparison between 

two epochs. 
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2. Dynamic Adjustment. The pure geometric model 

 

By the pure geometric model we can analyze classical observations (angles, dis-

tances, height differences) or modern observations (GNSS baselines, VLBI, SLR, 

etc). The observation equations for the m epochs are written in matrix form as 

vyDuBxAb +++=
o

  (1) 

where xo is the vector of coordinate corrections for the reference epoch, and u is 

the vector of differences (the displacement vector), y are the nuisance parameters 

(e.g. the similarity transformation parameters for GNSS observations), A, B and D 

are the coefficient matrices and v the observational errors. The nuisance parameters 

y must be eliminated before applying the minimal constraints solution. In this way 

they do not participate in the optimality criteria for the reference datum definition 

problem (see Fritsch and Schaffrin 1981, for a more detail discussion about this 

issue).  

The displacements may be treated as independent deterministic unknown parame-

ters, in which case their relation to an underlying function is ignored. This ap-

proach has the advantage that it is free from any dubious assumptions about the 

structure of the underlying function, but the results of the simultaneous adjustment 

are equivalence to those of single adjustment per epoch. The dependence of dis-

placements on underlying functions can be taken into account in two different 

ways. The first is to introduce a more or less empirical model for the function, 

which involves unknown parameters to be estimated from the adjustment of the 

observations. Typical choices are linear combinations of known base functions 

with unknown coefficients. Taking into account the analytical functions  

 aΦu =  (2) 

which are used to smooth-out the differential motions, representing the deforma-

tion model, the observation equations are written as 

 vyDaΦBxAb +++=
o

 (3) 

where a are unknown parameters an Φ  the matrix with elements depending on the 

known functions (the so called base functions) and the way than displacements 

depend on these functions, or 

 vyDaFxAb +++=
o

 (4) 

The deformation model (2) can be a space model (e.g. tensors of deformations), a 

time model (e.g. rates of displacements) or a space-time model (e.g. rates of de-

formations).  

In the first case, in which the displacements are considered as dependent on space 

only, we have for the point Pi 
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 axΦu )( ii =  (5) 

where the unknown parameters a are common for all points at the same epoch. For 

two dimensions, a choice of analytic functions to describe the horizontal move-

ments is 
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Useful tools for creating analytic polynomial-type models of the form of the above 

relations result from the implementation methods of the theory of elasticity as the 

deformation of the Earth are associated with the classical case of continuous media 

mechanics. Such methods were used for the first time in the study of deformations 

of the Earth's crust in 1932 by Tsuboi (Investigation on the deformation of the 

earth’s crust in the Tango district connected with the Tango earthquake of 1927, 

Bull. Eartquake Res. Inst.). He estimated the strain tensors from the temporal varia-

tion of point coordinates using the finite element method as proposed by Terada 

and Miyabe in their work Deformation of the earth crust in Kwansai districts and 

its relation to the orographic feature (Bull. Eartquake Res. Inst., 1929). For a more 

systematic study of deformation theory and its applications in geodesy and Geody-

namics we refer to the work of Dermanis and Livieratos Applications of deforma-

tion analysis in Geodesy and Geodynamics (Rev. Geophys. Space Phys., 21(1), 41-

50). Under the hypothesis of homogeneous deformation, the displacement of a 

point Pi is described by the equations 
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are the shear across any line parallel to east direction and the angle of infinitesimal 

rotation.  

The deformation parameters in simultaneous adjustment of network observations 

of different epochs are usually treated as deterministic parameters, where the de-

formation of the entire network area or large part of it is considered homogeneous, 

or it is treated in conjunction with analytical interpolation methods. For example, 

combining relations (8), (9) and (10) with (7) the deformation parameters are re-

sulting (Magrave and Nyland 1980, Bibby 1982) 
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The estimability problem of deformation parameters can be examined from the 

viewpoint of a particular solution of free network adjustment of two epochs of ob-

servations (Bibby, 1982, Chrzanowski et al., 1983, Xu et al. 2000) or from the 

viewpoint of the variations of strain parameters under similarity transformations 

(Dermanis, 1981, 1985b, Grafarend, 1985). In some way this problem was pre-

sented for the first time in 1966 by Frank in his work Deduction of earth strains 

from survey data (Bull. Seism. Soc. Amer. Vol. 56, 1), where the need for measur-

ing distances to define the scale of the network and the size of the movement was 

emphasized.  

The observations equations for the m epochs are  

 
oooooo

vyDxAb ++=  

               �  

 
αααααααα

vaΦAyDxAb +++=
o

 

               �  

 
mmmmmmomm

vaΦAyDxAb +++=  (12) 

where 
α

y  are the nuisance parameters for each epoch tα.   

For the datum definition problem the minimal constraints are introduced in sequen-

tial form. The datum for the reference epoch is defined first, by applying the inner 

constrains 
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 0xE =
o

�    (13) 

and afterwards the datum for any epoch is defined, by convenient minimal con-

straints. Although we have the extended model, we must minimize the norm  

 .min=
αα

uu
T  (14) 

which refers to the displacements. This solution corresponds to the best fitting of 

the coordinates at the various epochs to a reference epoch. According to Fritsch 

and Schaffrin (1981) the nuisance parameters y must be eliminated before applying 

the minimal constraints solution. In this way they do not participate in the con-

straints. The minimal constraints, which correspond to optimality criterion (14), 

have the form  

 .min=
αααα

aΦΦa
TT    or    .min=

ααα
aWa

T  (15) 

The condition (14) is introduced in the minimal constraints form  

 0aH =
αα

��  (16) 
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and  
α

E��  is the inner constraints matrix  

 0aE =
αα

��   . (18) 

This matrix results from the relation 

 1)( −

=
ααααα

ΦΦΦEE
T

���  (19) 

where ]...[ 21 �EEEE ����

=
α

is the inner constraints matrix 0xE =
αα

�  for the � net-

work points at epoch tα.  

Another choice for the reference datum definition problem is to minimize the "mo-

vement" in a particular direction, through minimal constraints. This “outer coordi-

nate solution” was given by Prescott (1981) in a specific application where the 

relative movement, and therefore the direction to minimize the temporal differ-

ences of the coordinates, should be parallel to the direction of the fault. Darby 

(1982) generalized the outer coordinate solution by noting that the preferred direc-

tion can be different at different stations and in “model coordinate solution” of 

Segall and Matthews (1988) the displacement residuals are made as small as possi-

ble.  

In the case that the displacements are considered to be dependent on time only, the 

deformation model has the simple form 

 
ii

tt aΦu ),( ′=    . (20) 
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If the movement is linear in time, we have the “velocity model” 
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where   δt = t − ′ t  is the time difference. The first application of this velocity model 

was presented by Morgan (1973) in his paper Crustal Velocity and Strain. Exam-

ples were given in Papo and Perelmuter (1983), Welsch (1986) and Vanicek et al. 

(1979), Mälzer et al. (1979) for vertical networks.  

The observation equations for the m epochs are written in matrix form as 
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mmmmmomm

vaΦAyDxAb +++=  (22) 

where the unknown parameters a are common for all epochs at the same point. The 

datum definition constraints are written as 

 0xE =
o

� , 0aH =
��  (23) 

where E�  is the inner constraints matrix for the reference epoch and the matrix H��  

is selected to minimize the norm 
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Final, we have 

 ∑
=

==

m

1α

α
ΦEWEH �����  (26) 

and the inner constraints aE�� = 0 matrix is 

 

1

11

−

==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑

m

T

m

α

αα

α

α
ΦΦΦEE ��� . (27) 

The minimal constraints take the form 
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For the velocity model uu �

α
δt=  the above equation becomes 

 0
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or 0uE =�
� , as given in Papo and Perlemuter (1983).  

When the displacements are considered to be dependent on space and time, the 

analytical deformation model takes the form 

 axΦu ),,( tt
ii

′=  (30) 

where the unknown parameters a are common for all epochs and all points and the 

observations equations for the m epochs are the same as in (22). Examples are 

given in Bibby (1982), Snay et al. (1983, strain rate model) and Welsch (1986). For 

two dimensions, a choice of analytic functions to describe the horizontal move-

ments, considered to be dependent on space and time, is 

 ∑
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A choice of functions 
k
f  is the polynomial-type functions defined by the relation  
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where j = j (l, m, n) is the index counting of akj parameters. Another choice is the 

function of the type  

 )( ),(),,( tqyxftyxf
okk

δδ =  (33) 

where the functions fok (x, y) of position only have the form given above, and q is a 

function of time. The simultaneous adjustment of the observations of many epochs 

was presented in work Geodetic networks versus time (Whitten, 1967), where 

movements are approached by functions of space and time of this form. Subse-

quently relevant papers were given by Snay and Gergen (1978), Snay et al. (1983), 

Chrzanowski et all. (1986), Welsch (1986) and regarding the determination of the 

vertical movements by Holdahl (1978, 1980), Vanicek (1975), Vanicek et al. 

(1979), Holdahl and Hardy (1979) and Mälzer et al. (1979). 

In equations (20) deformation process was seen as a change from an initial to a 

final state of the continuous media without considering the time elapsed between 

the two conditions. In many cases however it is important to know the rate at which 

these changes occur, especially when we have a continuous data stream and when 

the deformation is smooth in time. The displacement vector 
i

u of point Pi during 

the interval tδ  is given by the relation 
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and the vector of “velocities” 
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Examples of application were given by Morgan (1973), Bibby (1973, 1975, 1982) 

and Welsch (1986). 

The strain rate parameters can be calculated from the relations of the form (34) 

directly or combined with analytical interpolation methods. For example, combin-

ing equations (9), (10) and (33) for the description of movements, follows that 
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The minimal constrains which satisfy the condition uu
T  for all epochs are written 
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where i
E�  is the submatrix of E�  which corresponds to the point Pi and  

 ),,( tti
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Except for the method of Least Squares, robust parameter estimation with respect 

to outliers can be applied for all above models. Detailed discussion on these robust 

methods is given in Koch (1999).  
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3. Crustal Deformation Parameters on the Reference Ellipsoid from 

GNSS observations 

 

Although the deformation of the crust occurs in three dimensions, there is a long 

tradition of two dimensional processing of data, mainly because of the classic 

combination of geodesy where the calculation of the horizontal position of points 

on the surface of the earth is separated from the calculation of the vertical, but also 

because of uncertainty problems due to of the shape and the lack of information 

resulting in the expansion of the deformation from the earth's surface, which made 

the observations, to the three-dimensional space. 

Nowadays however, that the coordinates of points are determined in a three-

dimensional reference system from GNSS observations, more and more authors try 

to analyze the deformation of the crust developing prediction techniques in three 

dimensions, such as finite elements with tetrahedral (Kiamehr and Sjoberg, 2005), 

or describing the deformation parameters in the three-dimensional geocentric refer-

ence system (Bruner, 1979, Reilly, 1982), or other alternative methods which take 

into account the three-dimensional nature of the deformations (Altimer, 1999, 

Voosoghi, 2000). Subsequently, the relations for the calculation of surface defor-

mation parameters from observations of satellite systems will be given reduced on 

the surface of the reference ellipsoid and following the traditional separation of the 

horizontal deformation from the vertical movement. 

Using the notation
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which expresses the projection of the three-dimensional deformation at point Pi on 

the reference ellipsoid. Similar relations were given by Pope (1966) and Snay and 

Cline (1980). In the above equation 
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are the radii of curvature of the first vertical and meridian section respectively, a is 

the large semi axis and e the prime eccentricity of the reference ellipsoid.  

Various analytical functions (Holdahl, 1978, 1980, Holdahl and Hardy 1979) can 

be used to describe the vertical movement δthi. 



276 Dimitrios A. Rossikopoulos 

 

The variations
it

λδ , 
it

ϕδ  can be described following the analytical prediction tech-

niques and by polynomials of the form of the relations (6), which are rewritten as 
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or, introducing and time parameters, according to the formulas (Snay and Gergen, 

1978 and Snay at all.1983) 

    

δtϕ = a1o +  a1n ϕ
l−m

λ
m
 δt

n

m=0

l

∑
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r

∑      

    

δtλ = a2o +  a2n ϕ
l−m

λ
m
 δt

n

m=0

l

∑
l=1

r

∑   .  (42) 

where n is the index counting of the term mml
yx

− . 

These relations are useful for determining the deformation tensors from GNSS ob-

servations in an extended adjustment model, or from the direct comparison of the 

temporal of GNSS observations in conjunction with the finite element method or 

other interpolation methods. For example, observation equations of GNSS base-

lines in curvilinear coordinates φ, λ, h are 
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2/12/1
GGG =   is the metric matrix such that dzGdzdrdrds

TT
==  and 

ji
zz ,  are 

the corrections of approximate coordinates φο, λο, hο of two points.  Then, the vec-

tor of the temporal variations 
ijijijt
rrr −′=δ  of the components of the GPS base is 

given by 

 aΦGRaΦGRr   

2/12/1

jj
T
jii

T
iijt

+−=δ  (46) 

where we considered that aΦz  

ijijt
 =δ ,  or  ( )aΦBΦBr  

iijjijt
−=δ . (47) 

The matrix B
i
= R

i

T
G

i

1/2  has the analytical form 
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Table 1. A summary of modeling alternatives in four dimensional integrated geodesy 

(Dermanis and Rossikopoulos, 1988). 

w = A xo + B u + G so + D q + v     or     w = A xo + B u + G s + v 

 treatment of displacements u  treatment of variations of signals q (or s) 

 so always stochastic  so ~ (0, 
o
s

C ) 

 analytical :  u = Φ a  analytical :  q = Φ b 

 stochastic :  u ∼ (0, Cu)  stochastic :  s ∼ (0, Cs) 

 space-stochastic & time-analytical: 

 u = Φ a , a ~ (0, Ca) 

 space-stochastic & time-analytical: 

 q = Φ b , b ~ (0, Cb) 

 analytical + stochastic: 

 u = Φ a + δu , δu ~ (0, Cδu) 

 analytical + stochastic: 

 q = Φ b + δq , δq ~ (0, Cδq) 
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  (49) 

if we will separate the deformation in a horizontal and a vertical part and assume 

that 0=

i
h , case that is combined with the form given in the relation aΦz

iit
 =δ . 

The above relations can be used to estimate the deformation parameters on the ref-

erence ellipsoid from GNSS observations. 

 

 

4. The Integrated approach 
 

The second way for taking into account the dependence of the displacements on the 

unknown function is the use of stochastic models in a computational process 

known as a model of integrated geodesy. The smooth structure of this function can 

be related to the similarity of function values, which are close in space and time, 

and the stochastic counterpart of similarity is correlation. The function is modeled 

as a stochastic process with known (usually zero) mean function and known co-

variance function in a model of Integrated Geodesy. 
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The model of integrated geodesy also includes gravity field parameters and their 

variations with the time as stochastic parameters, ignored or fixed to known values 

in pure geometrical adjustment. The connection of the stochastic characteristics of 

the displacements and those of the time variation of the gravity field can be taken 

under considerations.  

All observations, including observations of the gravity field, for 3d Networks or for 

Vertical Networks can be analyzed simultaneously with an integrated model 

 vsGuBxAb +++=
o

   (50) 

where sG  is the part of gravity field parameters. We can also make use of other 

geophysical information which is connected to the variation of the gravity field. 

Three-dimensional integrated geodesy in its various aspects has been treated by 

several authors, e.g. Hein (1986), Rossikopoulos (1986). Four-dimensional inte-

grated geodesy has been treated in Collier et al. (1988), Hein (1984, 1986), Reilly 

(1981, 1982), Rossikopoulos (1986), Dermanis and Rossikopoulos (1988), Zhou 

Zhongmo and Chao Dingbo (1987).  

The adjustment of combined GNSS, levelling and gravity networks is an interest-

ing application of the integrated model. The incorporation of data of dynamic na-

ture, such as gravity and height differences, simultaneously with GPS observations, 

involves the integrated approach, where the main advantage is a more reliable es-

timation of the vertical component of the deformation field. Application has been 

given by Hatjidakis and Rossikopoulos (2006).   

Signals, i.e. the gravity field parameters and their variations in time, can be treated 

in a combined analytical-stochastic approach. All possibilities for the treatment of 

displacements and gravity signals, which can be further combined in all possible 

ways, are presented in table (1).  

All models, resulting from the combination of different treatments of the signals, 

take the final form vsGxAb ++=  where x contains the deterministic parameters, 

s contains all the stochastic parameters and v are the observational errors. The ad-

justment problem is one of estimation with respect to x and prediction with respect 

to s and v. For the stochastic parameters it is assumed that their means  

 µs =}{E , 0v =}{E  

and the covariance matrices  

 
s

Cµsµs =−− }))({( T
E , 

v
Cvv =}{ T

E  

are known, and 0Cvµs
sv
==− }){( T

E .  

The estimates x and predictions s and v depend on the estimation and prediction 

principles being used. In the most usual case, the Best Linear Unbiased Estimation 

is used which is a special case of the “robust collocation solution” (Dermanis, 

1991, 1993, Schaffrin, 1985). 
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5. Dynamic Adjustment. The Sequential Approach 

 

In the rigorous sequential approach (stepwise adjustment), the adjusted coordinates 

of the single adjustments per epoch are the new observations. The final results must 

be equivalent to those of the generalized approach of dynamic adjustment model. It 

can be used according to the type of available data and the analysis follows three 

main steps: 

a. Single adjustment per epoch. 

This step includes the adjustment of the observations at each epoch, the statistical 

analysis and the final estimation of the coordinate set and its full covariance matrix 

at each epoch. 

b. Best fitting of the coordinates at the various epochs to a reference epoch 

The elimination of the difference between the coordinates at two distinct epochs 
α
t  

and βt , which is due to their different datum definition, is obtained by the optimal 

fitting of the βt  coordinates to the corresponding 
α
t coordinates (at the reference 

epoch), applying the well known 2-d or 3-d similarity transformation. 

c. Adjustment with a deformation model  

The coordinates in the reference epoch and the transformed ones as described in 

the second step are adjusted taking into account a deformation model. The mathe-

matical model for the all epochs is written in matrix form 

 
111

vaΦxx ++=
o

 

                  �  

 
ααα

vaΦxx ++=
o

 

                  �  

 
mmom

vaΦxx ++=  (51) 

or   vaΦxx ++=
o

  and   .min

1

==∑
=

m

TT

α

ααα
vWvvWv  (52) 

where xo is the vector of coordinates corrections for the reference epoch, and the 

term aΦ  describes the displacement vector u. The displacements can be consid-

ered as dependent in time, or in space and time. 

For the time span of the analysis period (all epochs), the corresponding covariance 

matrices Q derived from the transformations, are non-positive definite. In this case, 

any choice of generalized matrix −
=QW  as a weight matrices, and therefore the 

pseudo inverse matrix +
=QW , leads to the best unbiased estimations for the pa-

rameters u (Rossikopoulos, 2010). 

The method is illustrated by Rossikopoulos et al. (1998), where GPS measurements 

are used associated to a 9-point geodetic network connecting the Greek and Italian 

coasts in the Ionian and Adriatic Sea. 
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6. The single solution. Comparison between two epochs 

 

In the single solution the results from the separate adjustment of the network at two 

distinct epochs are analyzed. This is the most well received approach in the geo-

detic literature because of its simplicity. The algorithmic steps consist of: 

a. A single adjustment per epoch. 

b. The best fitting of the coordinates at the various epochs to a reference epoch. 

c. The estimation of the deformations by one the following: 

– analytical interpolation methods (Brunner et all. 1981, Chrzanowski et all. 

1983),  

– stochastical interpolation methods (Bencini et al. 1981, Dermanis et al. 

1981),  

– finite element methods (Livieratos 1980, Dermanis and Grafarend 1992).  

In smoothing interpolation where the coordinate variations are considered observa-

tions the initial equations and the criterion of least squares are 

 .min, =+= eWeeaΦu
T  (53) 

where W is the weight matrix of  u. The covariance matrix Q of the displacements 

u derived from the transformations or from the inner constraint solutions, are non-

positive definite. Any choice of generalized matrix −

=QW  as a weight matrix, 

and therefore the pseudo inverse matrix +
=QW can be used. The pseudo inverse 

matrix can be derived as the “parallel sum” of the coefficient matrices �α and �β of 

the normal equations of two epochs 
  
t
α

 και 
  
tβ  (Zhong and Welsch, 1997) 

αβαβββαα
��������QW −−+

+=+== )()(  (54) 

According to Rao and Mitra (1971b) a unified theory of least squares, with the 

simple choice for the weight matrix 1)( −

+=
TΦUΦQW , valid for all situations 

whether the variance-covariance matrix of observations Q is non-singular or not. 

This solution has also been proposed in geodetic literature by Bjerhammer (1973) 

and Uotila (1974). A simple choice of U in all situations is IU  

2
δ=  and 

12 )( −

+=
TΦΦQW δ , where the coefficient 2

δ  ( 0≠δ ) regulates the magnitude 

of the elements of the matrix T
ΦΦ  compared to the elements of matrix   Q .  

In exact interpolation methods we have the problem of best fitting of polynomials 

to the coordinate variations and the observation model becomes 

 .min, =+= eeeaΦu
T  (55) 

Examples of robust estimation techniques in deformation models and in the ana-

lytical interpolation problems are given form Caspary and Borutta (1987), Zhong 

(1997) and Yang (1994), who gives robust estimation models for correlated obser-

vations. 
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The collocation method  

vsu +=   ,     .min
1
=+

−

sKsvWv
TT    or     .min

1
=

−

sKs
T  (56) 

where u  is the “observation vector” after the remove of the datum difference ef-

fects and W is its weight matrix. For the creation of the covariance matrix K of 

“signals” s a selected covariance function must be used.   

A first thought for the application of the collocation methods to geodetic data 

analysis for determining deformation is attributed to Elmer and Welsch (1981), 

although the application in photogrammetry for determining the deformation pa-

rameters of aerial images was preceded (Mikhail, 1976). At the same time, how-

ever, the method was applied to the analysis of geodetic data for the calculation of 

strain parameters in the area of Volvi in Greece (Dermanis et al., 1981) and Friuli 

in Italy (Bencicni et al., 1982). Applications to the estimation of the vertical 

movements were given by Hein and Kistermann (1981), Kanngieser (1983) and El-

Fiky et all. (1997). Papers on horizontal and vertical movements (El-Fiky and 

Kato, 1999, Wu et all., 2006, Kahle et all., 1995), were followed.  

A combined analytical-stochastic treatment is also possible for the displacements 

u. One part of the underlying function, the trend, is modeled with the help of a lin-

ear combination of known base functions and the remaining part is modeled as a 

stochastic process. As a result the signals u are replaced by saΦu +=   where a 

are unknown deterministic parameters and s are stochastic variables. 

At the final step of this we can include the input-output models, which are used to 

analyze the cause-effect relation of deformation processes and which are based on 

the condition that time series of the acting forces and the deformation are available. 

For describing this condition, special functions as multiple spectra, weighting func-

tions and transfer functions are used. Applications and a rather complete list of 

literature may be found in Heine (1999).  

A different approach for the uncertainty in deformation model fitting consists in 

description of the point coordinates for all epochs using fuzzy set formalism. The 

deformation parameters are considered as fuzzy numbers in a fuzzy regression 

model, which makes it possible to explicitly introduce the experts’ opinion. The 

procedure produces fuzzy estimates, which separate the spatial uncertainty from 

the uncertainty in the model parameters and fuzzy statistical measures which re-

flect the probabilistic uncertainty of the interpolation. The reader is referred to 

Bardossy et al. (1988), Kacewitz (1994) and to Shyllon (2001) for application to 

geodetic data analysis. A method of fuzzy modeling of a deformation process was 

demonstrated by Heine (2001).  
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