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Introduction  

 The inverse gravimetric problem in its general form canbedefinedasfollows: 

given a simple surface  S,  which is the boundary, of a simply connected domain 

B(S = ∂B) in R3 and given in the exterior of  S,  denoted by  Ω,  a Newtonian poten-

tial, namely a function  u(x)  harmonic in  Ω  and such that  

 ( ) ( )1
   | |u x O r x

r

Ê ˆ= =Á ˜Ë ¯ , (1.1) 

to find a mass distribution ( )m y , { }y B SŒ » , such that the Newtonian potential 

generated by ( )m ◊ ,  i.e.  

 
1

( ) ( )
B

xy

� m dm y= Ú
�

 (1.2) 

 
xy

x y= -�  

coincides with  u  in  Ω,  namely 

 
1

( ) ( ) ( ),    Ω ,= = " ŒÚB
xy

u x � m dm y x
�

 (1.3) 

 This general formulation though, is not yet consistent from the mathematical 

point of view, if we don’t add some restrictive conditions on the object ( ){ }m y  and 

on the meaning of formula (1.3). As a matter of fact, the family of functions of y , 

indexed by Ω,Œx   

 
1

1;  Ω,  
Ï ¸

∫ Œ Œ ∫ »Ì ˝
Ó ˛xy

x y B B S
�

�� , (1.4) 

has specific properties which can be summarized as follows:  

a) �� is a set of functions harmonic on B and, to be more precise, even on ;B  as 

such they belong to  C∞(B),  
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b) if we assume that  S  is  C∞ too, e.g. there is a  C∞  function ( )c x  positive in B 

and negative in Ω, so that  

 ( ){ }{ } ; 0x S x c xŒ ∫ = , (1.5)  

 then the functions in  ��  are in ( )C B
•  as well as in ( )C S

• .  

 To be clear, let us remember that f C•

Œ  on a closed set B  means that there is 

an “extended” functions f�  defined and C•  on an open set O B… , such that 

f f∫
�  on B .  

 In order to avoid further mathematical intricacies we shall always assume that 

S C
•

Œ  holds; in fact in examples through the paper we shall assume S to be a 

sphere of radius R, to make our reasoning more transparent.  

 We will denote by �� the linear span of ��, namely the space of finite linear 

combination of elements of ��,  

 1

1

k

n

k x y

k

a
-

=

Ï ¸Ô Ô
= Ì ˝
Ô ÔÓ ˛
Â ���  (1.6) 

 { }(   real, Ω   1,  2,..., )Œ =
k k
a x k n  

 Typically the linear manifold �� is viewed as a subspace of a larger space 

( )H B  endowed with some kind of topology and complete with respect to that (cf. 

[10]).  

 It is interesting to remark that, basically under very general hypotheses related 

to the Runge–Krarup theorem (cf. [5]), the closure of �� in ( )H B  coincides with 

theintersection of ( )H B  with ( )B� , the space ofallfunctions that are harmonic in 

B, open:  

 [ ] ( ) ( )
( )H B

H B B∫ «�� � . (1.7) 

 In any event, we shall assume that we want to perform our analysis for a space 

( )H B  for which (1.7) holds true and we shall call  

 ( ) [ ] ( )H B
HH B = �� . (1.8) 

 Put in this way, it is obvious that for (1.3) to be meaningful one has to assume 

that the object ( ){ }m y  is in the dual space ( )H B¢  of ( )H B , i.e. it is a 

bounded/continuous linear functional on ( )H B , so that its restriction to ( )HH B  is 

meaningful too and one can write  

 ( ) ( )1,  ( )xy
B

m y dm y u x-

= =Ú� , (1.9)  
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the integral notation having only a symbolic value, although it becomes totally 

adequate in the two best known examples, namely:  

a) in case ( ) ( )H B C B=  and ( )m y  has then to be a Radon measure; then the in-

tegral (1.9) has to be understood in the sense of Stjelties–Lebesgue ([6]). In this 

case ( )HH B  coincides with the Banach space of functions harmonic in B, and 

continuous up to the boundary,  

b) in case ( )m y  is absolutely continuous with respect to the Lebesgue measure 

and the density ( )ρ y  defined by  

 
3

( ) ( )dm y ρ y d y=  (1.10)  

 is in 2 ( )L B , i.e. ( ) ( ) ( )2 2
:H B L B L B¢ ∫ ∫  note that in this case, since ( )H B¢  is 

a Hilbert space it can be canonically identified with its dual, namely 

( ) ( )2
.H B L B=  Moreover, in this example  

 ( ) ( )2
HH B HL B∫  (1.11) 

i.e. the space of functions harmonic in B and square integrable there, which is 

also called sometimes in literature a Hardy space (cf. [7]).  

 Other notable examples can be constructed with ( ),2
,

s

ρ H BŒ  a Sobolev space 

with positive index s, although we shall not dwell on this case.  

 To perform an analysis of the inverse gravimetric problem means:  

a) to define the space ( )H B  and therefore ( )H B¢ ,  

b) to verify that ( ) ( )H B B«�  is in fact a closed subspace of ( )H B , that we de-

note ( ),HH B   

c) to find a decomposition of the space ( )H B¢  into two complementary spaces  

 ( ) ( )H B K HH B¢ = ≈ ¢  (1.12) 

such that every “mass distribution” ( )m y  can be uniquely expresses as the sum of 

one element ( )
h
ρ y  in a subspace ( )HH B¢ , which is isomorphic to thedual of 

( )HH B , and one element 
0
( )ρ y  in the kernel of Newton’s operator, i.e. such that  

 ( ) 1

0
,  0   Ω

-

∫ " Œ
xy

ρ y x�  . (1.13)  

 Furthermore the decomposition (1.13) has to be regular, namely the projector π 

of ( )H B¢  onto ( )HH B¢  has to be continuous.  

 The case 2( ) ( )H B L B=  is best understood and treated in geodetic literature; it 

will be recalled in §2 in a slightly more general form. In §3 the decomposition 

(1.13) will be made explicit for the 2 ( )HL B  case. In §4 examples are presented 
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showing that there is a need for a more general theory to include the analysis of 

some classical cases.  

 

2 The L
2
(B) case  

 As we have already stated, in this case  

 ( ) ( ) ( )2
HH B HL B HH B∫ ∫ ¢ . (2.1)  

Note that by its proper definition, there is nodifference between 2 ( )L B  and 2 ( )L B  

as the elements of 2
L  are viewed as equivalence classes of functions coinciding 

almost everywhere in B (and therefore in ).B   

 Therefore in this case our Newton’s equation  

 ( ) ( ) 1

3xy
B

u x ρ y d x-

∫ Ú �  (2.2) 

is just interpreted as an 2 ( )L B  coupling.  

 To proceed with our analysis, we need to prove that the relation (1.7) holds true.  

 This can be done in several ways. We shall follow a two-step reasoning: first we 

show that ( ) ( )2
B L B«�  is a closed subspace of 2 ( )L B  namely 2 ( )HL B ; then we 

shall prove that the family �� is total in 2 ( )HL B , i.e. that �� is dense in this 

space.  

 The first statement is one of the many forms of Harnack’s theorem ([3]). In any 

event one elementary reasoning is as follows: let { ( )}
n

u x  be a convergent se-

quence in  �(B) ∩ L(B); then x B" Œ  we have for any ball ( ),B x δ  with suffi-

ciently small radius  δ  

 3
( , )

1
( ) ( )

( , )
∫ Ún n

B x δ

u x u y d y
B x δ

 (2.3) 

because of the theorem of the mean ([1]).  

 Call ( )u x  the 2 ( )L B  limit of { }
n

u ; passing the limit in (2.3) we see that for 

almost every x  and sufficiently small  δ  

 3
( , )

1
( ) ( )

( , )
n

B x δ

u x u y d y
B x δ

∫ Ú , (2.4) 

i.e. it satisfies the mean property too. This means that ( )u x  has to be harmonic as 

well (cf. [1]).  

 As for the second step we have basically to prove that if 2 ( )
h
ρ HL BŒ  and  

 ( ) ( )1
Ω   , 0

-

" Œ = ∫xy hx u x ρ y� , (2.5) 

then it is necessarily  
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 ( ),    0
h

y B ρ yŒ = . (2.6) 

To this aim, let us introduce a sphere 
e

S  with radius 
e

R  enclosing B. By combin-

ing 1{ ,  }
xy e

x S
-

Œ�  we can generate, e.g. through single layer potentials, all the func-

tions ( )v y  which are harmonic in a sphere concentric to 
e

S  but with radius 
e

R ε+ . 

Since this set of functions is dense in 2 ( )HL B  (in fact even in �(B)) because of 

Runge – Krarup theorem ([5]), we can conclude that the same holds for ��.  

 Up to here the points a) and b) of our analysis program have been settled, so we 

need only to define the kernel K of Newton’s operator and verify that the corre-

sponding projector (I − π) is continuous.  

 Since we are conducting our analysis in a Hilbert space, namely 2 ( )L B , the 

choice of K is only natural, i.e. it consists in taking K as the orthogonal comple-

ment in 2 ( )L B  of 2 ( )HL B ,  

 ( )2
K HL B

^

È ˘= Î ˚ . (2.7) 

 In this case in fact  π  is an orthogonal projector a non-expanding operator with 

norm equal to 1.  

 So we finally obtain the decomposition 

 ( ) ( ) ( ) ( )2

0
,     

h
ρ L B ρ y ρ y ρ y" Œ = +  (2.8) 

with 

 ( ) ( )[ ]
h
ρ y π ρ y=  (2.9) 

 ( ) ( )0
( ) [ ]ρ y I π ρ y= -  (2.10) 

and 

 1 1Ω,   ( ) ,  ,  - -

" Œ ∫ =xy xy hx u x ρ ρ� �  (2.11) 

 1

0
Ω,   ,  0 .

-

" Œ =
xy

x ρ�  (2.12) 

 How to characterize the operator π and the zero potential densities 
0
( )ρ y  will 

be object of next paragraph.  

 

 

3 On the characterization of  π  and  K  

 There are several ways to characterize the harmonic density ( )
h
ρ y , but one is 

particularly expressive in the frame of theoretical geodesy; namely  π  can be repre-

sented as an integral operator with a kernel ( , )H x y  which is also the reproducing 
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kernel of 2 ( )HL B . In fact, although 2 ( )L B  is not endowed with a reproducing 

kernel, its closed subspace 2 ( )HL B  is. This because the evaluation functional 

( )
x

δ y  is indeed bounded in 2 ( )HL B , x B" Œ  (open) as a consequence of the ma-

jorization  

 ( ) ( )2
L Bv x C v£ ; (3.1) 

in (3.1) the constant C depends on the distance of x  from the boundary (cf. [1]). 

Therefore there is a reproducing kernel ( , )H x y  such that  

 ( ) ( ) ( ) ( )
22

,     , , .  

L

v HL B v x H x y v y x B" Œ ∫ " Œ  (3.2) 

 Since the behavior of v in B open completely characterizes this 2 ( )L B  function, 

(3.2) says that ( , ),  ◊ ◊H x  is a representation of the identity in 2 ( )HL B .  

 Therefore if { }( )
k
e x  is a complete orthonormal system in 2 ( )HL B , we can put  

 ( ) ( ) ( )
1

,
k k

k

H x y e x e y

+•

=

=Â , (3.3) 

the series being 2 ( )L B  convergent. Indeed ( ) ( )2
, ,  H x y HL B x B= " Œ .  

 Now from the decomposition 

0h
ρ ρ ρ= +  

we can take the scalar product 

 ( ) ( ) ( ) ( ) ( ) ( )0
, ,  , ,  , ,  

h
H x y ρ y H x y ρ y H x y ρ y= + . (3.4)  

We note that  

( ) ( ) ( ), ,  
h

H x y ρ y ρh x∫  

because 
h
ρ  is in 2 ( )HL B  and  

( ) ( )0
, ,  0H x y ρ y ∫  

as 
0
ρ  is in the orthogonal complement of 2 ( )HL B .  

 Therefore (3.4) becomes  

 ( ) ( ) ( ), ,  
h
ρ x H x y ρ y∫  (3.5) 

proving that ( , ),  ◊ ◊H x , viewed as on integral operator in 2 ( )L B , coincides with 

π.  

 Example As an exercise the reader can compute ( , )H x y  for the case that B is a 

sphere of radius R. In this case one can use as a complete orthogonal system in 
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2 ( )L B  the functions 

2

( )
nm

r
Y σ

R

Ï ¸Ê ˆÌ ˝Á ˜Ë ¯Ô ÔÓ ˛
, which however are not normalized in 2 ( )L B . 

An easy computation shows that  

 

2

2 2

0

4
( )

2 3

n
R

nm

r π
dσ drr Y σ

R n

Ê ˆ ∫Á ˜Ë ¯ +Ú Ú . 

Therefore we must have  

 
2

0

1
( , ) (2 3) ( ) ( )

4

nn
x y

nm x nm y

n m n

r r
H x y n Y σ Y σ

π R

+•

= =-

Ê ˆ
= + =Á ˜Ë ¯Â Â  

 
2

0

1
(2 3)(2 1) (cos ) ,

4

n

x y

n xy

n

r r
n n P ψ

π R

+•

=

Ê ˆ
= + + Á ˜Ë ¯Â  (3.6) 

where 
xy

ψ  is the spherical angle between x and y. In this case the sum of the series 

is easy to compute, starting from the identity  

2 4 2 1/2

0

( ) [1 2 ]

n

ξ t ξ ξ t

+•

-

=

= + +Â  

and results in 
2 3 4

4 2 5/2

3 10 8
( , ) ( , )

(1 2 )

ξ ξ t ξ
H x y F ξ t

ξ ξ t

- + -
∫ =

+ -

 

where 
2
,

x y
r r

ξ
R

=   cos
xy

t ψ= . Note how this kernel is regular in B but it becomes 

singular for x y= , 
x y
r r R- Æ .  

 We switch now to characterize the ρ0 component of ρ, i.e. the elements of the 

subspace K.  

 As we have seen, the elements of K are such as tobe L2-orthogonal to all L2-

harmonic functions and in particular to 1

xy

-

� , so generating identically zero external 

potentials. Now there is a natural class of functions which accomplishes this task. 

Recall the definition of  �(B),  i.e. the space of functions which are  C∞  in B, so 

that they are identically zero close to the boundary  S.  Then, if  φ∈�(B), Δφ∈K.  

In fact, by using a classical Green’s identity, we have  

 1 1 1

3
Ω:  ( ) Δ ( ) ( ) ( ) ( ) ( ) 0- - -È ˘Œ = = - ∫Î ˚Ú Úxy xy xy

B S
x u x φ y d y t n φ n t φ dS� � �  (3.7) 

 In (3.7) t(v) denotes the trace operator on  S,  while n(v) is the operator of the 

trace of the external normal derivative of  v on S  computed from the interior of  B; 

(3.7) is true because by definition of  φ  
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 ( ) ( )0,   0t φ n φ∫ ∫ . (3.8) 

 We have established (3.7) for very smooth  φ∈(�), however for (3.7) to be 

meaningful we need only that ( )2
Δ Œφ L B , because we intend to require this to be 

the  ρ0  component of  ρ;  a natural choice is then to see �(B) as a subspace of 

H2,2(B), the space of functions which are square integrable in B together with their 

derivatives up to the second order. As it is known, this is a Hilbert space of Sobo-

lev type. In particular it is perfectly known that the two operators t( ) and n( ) are 

bounded in the sense  

 
2,2 3/2

2,2 1/2

:  ( )  ( )

:  ( )  ( ),

t H B H S

n H B H S

Æ

Æ

 (3.9) 

implying that the integral on S in (3.7) is certainly well-defined and continuous 

when  φ  varies in 2,2 ( )H B  (cf. [3]). Subsequently we can say that (3.7) holds for 

al  φ  in 2,2
H  that can be reached by a sequence  φn∈�(B) convergent in the H2,2 

topology. In other words (3.7) is true for all φ∈[�(B)], closed in H2,2. Also this 

space is well-known in literature and usually called 2,2
0H  (cf. [3]). We could also 

say that (3.7) is true for all 2,2
0φ HŒ , i.e. all 2,2

φ HŒ  satisfying (3.8).  

 The question then is whether  

 
2,2

Δ
0

Ê ˆ ∫Á ˜Ë ¯
H K  (3.10) 

or not; in other words, can all  ρ0∈K  be expressed in the form  

 2,2
0 0,    ?ρ Δφ φ H= Œ  

The answer is in the affermative. Take a ( )2

0
ρ K L BŒ Ã  and consider the B.V.P.  

 0
Δ

( ) 0

=Ï
Ì

=Ó

φ ρ

t φ
 (3.11)  

As it is known (cf. [3]) there is one and only one solution,  φ∈H2,2, of (3.11). On 

the other hand, since  ρ0∈K,  we have from (3.7), recalling that  t(φ) = 0,  

 ( ) ( ) ( )1 1( ) 0  xy xy
S Σ

u x t n φ dS n φ dS x B- -

= = ∫ " ŒÚ Ú� � . (3.12) 

Now ( )u x  in (3.12) is a single layer potential, with density 

( ) ( ) ( )1/2 2
n φ H S L SŒ Ã . Since such a potential is known to be everywhere con-

tinuous (cf. [3]), we can claim that ( ) 0u x =  on  S  too. But then, if we penetrate B 

with x , we find that ( )u x  has to be harmonic in B and zero on S, i.e. ( ) 0u x =  in B 

too. So ( ) 0u x =  everywhere and this is enough to conclude that  
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 ( ) 0n φ = . (3.13) 

Therefore  ρ0∈K  implies that  φ,  solution of (3.11), is in 2,2
0Η  as we wanted to 

prove.  

 Remark So far we have recovered and systematized a result known since long 

(cf. [8, 9]).  

 However wew ould also like to know, for the sake of future research, whether 

the representation  

 2,2
0Δ ,   = + Œ

h
ρ ρ φ φ H  (3.14) 

is unique or there is more freedom in choosing  φ.  After all the condition  t(φ) = 0 

has been arbitrarily chosen. Let us call 2,2 ( )ΗΗ Β  the subspace of 2,2 ( )Η Β  given 

by  

 ( ) ( ) ( )2,2 2,2
;HH B H B B= ««�  (3.15) 

since H2,2-convergence of a sequence fn to f  implies also L2-convergence of first 

and second derivatives, it is easy to see that ( )2,2
HH B  is a closed subspace of 

( )2,2
H B . Then the following Lemma holds.  

 Lemma (of decomposition) given any  ρ∈L2(B),  the following decomposition 

holds  

 
0

2

0
( ),     ,

h

h

ρ ρ ρ

ρ HL B ρ Κ

= +ÏÔ
Ì

Œ ŒÔÓ
 (3.16) 

 
2,2 2,2

00

Δ( )

( ),    ( ) ,

= +ÏÔ
Ì

Œ ŒÔÓ

ρ ψ v

ψ H B v H B
 (3.17) 

where  ρh, ρ0, ψ  are unique,  v  is arbitrary.  

 Proof: that (3.16) holds we already know; that (3.17) holds for a unique ψ, with 

v ≡ 0,  we also know.  

 That  Δ(ψ + v) = Δψ = ρ0  if  v∈HH2,2(B)  is trivial, i.e. φ = ψ + v  is again an 

admissible function to represent  ρ0 =Δφ.  That (3.17) is the most general decompo-

sition is also obvious because if one has to have  

 Δ(ψ + v) = ρ0 = Δψ  

then it must be  Δv =0  too.  □ 

 So, not only the subspace 2,2
0H  is suitable to represent  ρ0∈K,  but also all the 

linear manifolds obtained by translating 2,2
0H  along a function harmonic in  B.  
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4 Is the L
2
 analysis sufficient?  

 Naturally the analysis just developed is a pure mathematical tool, useful to clar-

ify what is the state of knowledge on the interior density of a body when we know 

its exterior potential.  

 Most interesting it is then to introduce further physical information, whether in 

deterministic or in stochastic form, to be combined with the potential and to restrict 

the class of meaningful solutions. Nevertheless, not even the pure mathematical 

analysis has still accomplished its job, because there are quite meaningful mass 

distributions used in classical analysis that do not enter int the L2 densities case.  

 Such are for instance point masses, single layers, double layers etc. None of 

them possess an L2 density, but the first two cases are examples of measures, while 

the third is a distribution, with some surface in B  (e.g. S) as support.  

 All these cases are still manageable in relatively easy way if the support of m(y), 

be it in general a distribution, is contained in  B  open, but they require finer analy-

sis tools if the support reaches the boundary  S.  

 Let us illustrate this by the example of a body  B  which is a ball of radius R, 

and a mass distribution which is a point mass  M  placed at distance  R0 < R  from 

the center on the  z  axis.  

 Example Let’s take B as a sphere with radius R and as mass distribution a point 

mass at P0, the point at distance R0 along the z axis; the mass at P0 is M. As it is 

known | |r x R" = >  we have a potential 
0
( )u x  that can be expanded into the series  

 

1

0

0

0 0

( )
( )

2 1

n

no x

u

R Y σGM
u x

R r n

++•

=

Ê ˆ= Á ˜Ë ¯ +Â  (4.1) 

in fact remember that  

 ( ) ( )2 1 cos= +
no x n x
Y σ n P ϑ ,  

with 
x

ϑ  the spherical colatitude of x .  

 As we see, the mass distribution generating the potential is  

 ( ) ( )0 0
m y Mδ y x= -  (4.2) 

where ( )◊δ  is not a function and in particular it is not square integrable on B. How-

ever it is obvious that there is a unique  L2  density equivalent to {m0(y)} outside B. 

In fact our potential can be equivalently generated by a uniform density 
ε
ρ  on a 

small sphere of radius  ε,  such that ( )0
, ,B x ε BÃ  (i.e. 

0
),R ε R+ <  if the totalmass 

of this small sphere is the same as M. Since such a density is in  L2(B)  it must also 

have a projection  ρh  on  HL2(B).  We want to find the explicit form of  ρh.  Let us 

put  
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0

( ) ( )

nh

h nm nm y

n m n

S
ρ y ρ Y σ

R

+•

= =-

Ê ˆ= Á ˜Ë ¯Â Â  (4.3) 

 An elementary computation shows that the potential ( )u x , generated for 

| |r x R= >  by the density(4.3), is  

 

1

0

( ) 3 ( )
(2 1)( 3)

nn

nm

nm x

n m n

ρBG r
u x Y σ

R n n R

++•

= =-

Ê ˆ= Á ˜Ë ¯+ +Â Â  (4.4) 

 34
.

3
B πR

Ê ˆ=Á ˜Ë ¯  

Equating (4.1) and (4.4) we find  

 01
(2 3) 2 1

3

n

nm mo

RM
ρ n n δ

B R

Ê ˆ= + + Á ˜Ë ¯ . (4.5) 

As we can see, the density  ρh  we found is in  L2(B), i.e. 

 

23 2

2 2 0

2

0

4
( ) (2 3)(2 1)

9

n

h y
B

n

RπR M
ρ y s dsdσ n n

RB

+•

=

Ê ˆ= + + Á ˜Ë ¯ÂÚ  (4.6) 

is bounded on condition that 

 
0

R R< . (4.7) 

However, (4.6) says also that  

2

0

2

( )
lim

h L B
R R

ρ
Æ

= +•  

showing the difficulty of using  L2  theory when the mass distribution concentrates 

on the boundary.  

 The example can be easily generalized to arbitrary smooth surfaces  S  and to 

very irregular mass distributions on conditions, as we already said, that they have a 

support in  B  open. On the contrary, treating distributions with support that reaches 

the boundary  S,  is matter for a future finer analysis.  
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