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Abstract 

 In the adjustment of observations by the Least Squares Method the variance covariance 

matrix (of observations) is usually a positive definite matrix. In cases such as the derived 

observations, e.g. in the sequential approach (stepwise adjustment) for the assessment and 

interpretation of the geodetic data for the detection of possible spatial displacements and the 

estimation of deformation parameters, the covariance matrix may be singular. In this case 

the problem is the choice of a g-inverse matrix as a weight matrix that leads to the Best 

Linear Unbiased Estimation. Several attempts have been presented which finally end up in 

the Rao-Mitra approach of Unified Least Squares.  

 

 

1. Introduction 

 In the standard linear model being used in geodetic data analysis, the ob-

servation equations are written as 

 vxAb +=   (1) 

where ob
yyb −=  is the n × 1 vector of the observables, Α is the n × m matrix of 

known coefficients (design matrix) of the unknown parameters x and v the un-

known observational errors. The relations 
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describe the stochastic model, where 
  

σ
2  is the unknown variance of unit weight 

and C is the n × n covariance matrix of observations. The cofactor or weight coef-

ficients matrix Q is usually positive definite.  

 In case   Q = I and matrix A is full of rank in (1), Adrien-Marie Legendre (1752-

1833) in 1806 and Carl-Friedrich Gauss (1777-1855) in 1809 propounded the fa-

mous theory of Least Squares which postulates that the Best Linear Unbiased Es-

timates of   x is obtained by minimizing the sum of squares 
  
v
T
v . At the beginning 



218 Dimitrios A. Rossikopoulos 

 

of 20 century Andrei Markov (1856-1922) was credited with justifying the method 

of least squares without superfluous assumptions of normality. Because of this con-

tribution the key theorem in the theory of least squares is often refer to as Gauss-

Markov theorem. If IQ ≠ , but nonsingular, Alexander Craig Aitken (1895-1967), 

one of New-Zealand’s greater mathematicians, proposed to minimize the sum of 

weighed least squares 
  
v
T
P v , which leads to the Best Linear Unbiased Estimate of 

  x when 
    P =Q−1 . 

 When the rank of A is not full, a situation which was first formulated by the 

Indian mathematician and statistician Raj Chandra Bose (1901-1987), Rao (1945, 

1962) showed that the theory of least squares is still applicable. He was first led to 

the pseudo-inverse of � and to the concept that any solution of the normal equa-

tions 
  
� ˆ x = u  is the best linear unbiased estimate of   x. He showed that in the dis-

cussion of least squares theory one needs the so called Moore-Penrose inverse only 

in the weak sense of non-estimable parameters. The concept of pseudo-inverse was 

introduced by Erik Ivar Fredholm (1866-1927) in 1903 and the pseudo-inverse 

matrix was independently described by Eliakim Hastings Moore (1862-1932) in 

1920, Arne Bjerhammar in 1951 and Roger Penrose in 1955.  

 In the case of geodetic networks the rank deficiency of matrix  A  is related to 

the reference frame definition problem, the well known datum problem or zero 

order design problem in the geodetic literature. The reference frame definition 

problem has received considerable attention in the geodetic world since the pio-

neering work of Meissl (1969) and its popularization by Blaha (1971). The nature 

of the problem has been clarified in two important papers by Grafarend and Schaf-

frin (1974, 1976) while the relation of various solutions to Meissl’s inner solution 

has been established with the introduction of the S-transformation by Baarda 

(1973). This problem dominated the geodetic literature in the 70s, although it still 

remains opportune in GNSS applications, as well as in the assessment of geodetic 

data for the detection of possible displacements and the estimation of deformation 

parameters.   

 If the observation vector consists of original observations, the cofactor matrix Q 

will be always positive definite. In cases, however, of derived observations it may 

be singular. If an unknown vector x resulting from an adjustment of incomplete 

observations will be used in a second adjustment, the cofactor matrix Qx is singular 

and has no ordinary inverse. Rao and Mitra (1971b) suggested one unified method 

of least squares which holds good whether Q is singular or not. Related works have 

been provided by Bjerhammer (1973), Uotila (1974), Pelzer (1974), Wolf (1979), 

Niemeir (1979), Perelmuter (1981), Caspary (1983), Sjöberg (1985), Nkuite (1998) 

and Nkuite and Mierlo (1998). 
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2. The weight matrix 

 The Least Squares Estimation is equivalent to the Best Linear Unbiased Estima-

tion in the case that the variance-covariance matrix Q of observations is nonsingu-

lar and the weight matrix is the regular inverse 1−
=QP . In the case that the vari-

ance-covariance matrix of observations is singular, a general inverse Qg can be 

used as the weight matrix P, therefore the pseudo-inverse matrix +
=QP  itself. In 

this case the best linear unbiased estimation of the parameters x doesn’t depend on 

the choice of the g-inverse Qg (Mitra and Rao, 1968). 

 The question that arises is the following: Does there exists a weight matrix P 

that can be used in least squares estimation to get the best linear unbiased estima-

tion of parameters x in any case, regardless of the rank of matrix Q? The answer is 

that such a matrix exists and emerges as g-inverse of the matrix )( T
AUAQM +=  

 gTg )( AUAQMP +==  (3) 

where U is a symmetric matrix, such that the number of rank of T
AUAQ +  is 

equal to the rank of [ Q A ]. This solution was given by Rao and Mitra (1971b) and 

Rao (1971, 1972) where a generalized method called “unified theory of least 

squares” has been developed which doesn’t depend on the rank of matrix Q. This 

solution has also been proposed in geodetic literature by Bjerhammer (1973) and 

Uotila (1974). 

 From the observation equations (1), satisfying the minimum criterion 

 .min)( =+= vAUAQvvPv gTTT  (4) 

where g
MP = , the system of normal equations is obtained 

 
  
� ˆ x = u   (5) 

where  AAUAQAAPA�
gTTT )( +==  and  bAUAQAbPAu

gTTT )( +== .  

 There are three key notes that should be mentioned: 

1. The weight matrix (3) can be considered as a general solution since, when Q is 

regular, it is proved that the solution obtained with this choice is equivalent to 

the solution where 1−
=QP . The proof of this proposal is simple (Uotila, 

1974): The expressions bellow are valid  

 [ ] bAUAQAxAAUAQA
11 )(ˆ )( −−

+=+
TTTT  

 or 
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 Due to the fact that matrix 1111 )( −−−−

+− UAQAAQAI TT  is regular, the ex-

pression above becomes (ATQ−1A) ˆ x = ATQ−1b . 

2. The least squares criterion vPv
T  doesn’t depend on the choice of the g-

inverse 
  M

g
= (Q+AUAT )g  and generally, under appropriate conditions (Rao, 

1972) that usually are fulfilled in the geodetic applications (Nkuite and Mierlo, 

1998), it doesn’t depend on any choice of g-inverse gQ . The expression bel-

low is valid  

vAUAQvvQv gTTgT )( +=  (7) 

3. Although Q may be singular, there is a possibility of 
    M = (Q+AUAT )  being 

non-singular, in which case the weight matrix P would be the regular inverse 

    P =M
−1.  

 A simple choice of U in all situations is IU  

2
δ=  and gT )( 2AAQP δ+= , 

where the coefficient 2
δ  ( 0≠δ ) regulates the magnitude of the elements of the 

matrix T
AA  compared to the elements of matrix   Q . This choice of U seems to 

have some advantages. Even if Q is singular, it may so happen that M is nonsingu-

lar, in which case P can result as a regular inverse ( 1−
=MP ). In case that Q is 

nonsingular but ill-conditioned, the computation of 12 )( −

+
TAAQ δ may be more 

stable than 1−Q . 

 

 

3. Computation of adjusted parameters and a-posteriori errors 

 The solution of the normal equations (5), with constraints H x = z, doesn’t de-

pend on the choice of the weight matrix P ( 1−
=QP  when Q is nonsingular, 

g
QP =  when Q is singular, or generally g

MP =  when Q may be whether singu-

lar or not), and can be summarized as below (Dermanis, 1986):   

a. Minimal constraints solution:  

zHEEuRzHEEu�x
111 )()(ˆ −−−

+=+=
TTTTg  (8) 

 where 

EEHHEEHH��
111 )()()( −−−

−+=
TTTTg    and   HH�R

T
+=  (9) 

 and the rank of H is equal to the number of rank defects of A. The inner con-

straints solution (E x = 0) is 

uEE�u�x
1)(ˆ −+

+==
T  (10) 

 where +

�  is the pseudo-inverse matrix of �, 

EEEEEEEE��
111 )()()( −−−+

−+=
TTTT   .  (11) 
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b. Redundant constraints solution: 

xxzxHHRHHRx

zHRHHRuRHHRHHRRx

ˆˆ)ˆ () (ˆ      
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 where 

HH�R
T

+= ,    uRx  ˆ
1−

=
R

  (13) 

 and the g-inverse is  11111  ) ( −−−−−

−= RHHRHHRR�
TTg . 

 

 The adjusted residuals and the a-posteriori variance of unit weight are evaluated 

as 

xAbv ˆ ˆ −=  ,   

      

ˆ σ 
2
=

1

f
 ˆ v 

T
P ˆ v  (14) 

where )(WQtrf =  are the degrees of freedom and the adjusted residuals v̂  corre-

sponds to v through the matrix W 

 vWQPA�APPQv =−= )(ˆ Tg  (15) 

 The Minimum Norm Quadratic Unbiased Estimation (MINQUE) of the vari-

ance of unit weight 
  

σ
2  and its variance (under the assumption of normally distrib-

uted observations), for g
MP = , are given by  

vAUAQv ˆ )(ˆ 
1
 ˆ 2 gTT

f
+=σ    and    

ˆ2
 )ˆ(

4

22

f

σ

σσ = . (16) 

 The covariance matrices of the adjusted parameters x̂ , the residuals v̂  and the 

observations ŷ , for the general choice g
MP = , follow by 

( )UAAUAQAQC
xx

−+==
ggTT })({ˆˆˆ 2

ˆ

2

ˆ σσ
 (17) 

( )T
AQAQQC

xvv ˆ

2

ˆ

2

ˆ
ˆˆ

ˆ

−== σσ  (18) 

and 

      
ˆ C ̂  y =

ˆ σ 
2Q ˆ y =

ˆ σ 
2AQ ˆ x A

T
   . (19) 

If the cofactor matrix  Q  is nonsingular, the relation  

UAQAAAUAQA +=+
−− gTgTT )(])([ 11  (20) 

being in effect, it is proved that the cofactor matrix of adjusted parameters becomes 

      Q ˆ x = (A
TQ−1A)g  .  
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4. Statistical evaluation of the results  

 A general check on the overall validity of the Gauss-Markov model is based on 

the a-posteriori variance of unit weight 2
σ̂ . The null hypothesis 22

:
oo

H σσ =  for 

the value of unit weight 2
σ , where 2

o
σ  is its a-priori value, is tested against the 

alternative hypothesis 22
:

oa
H σσ ≠  using the statistics 

2

22

2

 ~ 
ˆ )(ˆˆ 

f
o

gTT

o

f
χ

σσ

σ
χ

vAUAQv +
==  (21) 

or, alternatively  

      

F =
 ˆ σ 

2

σo
2
=

ˆ v T (Q+AUAT )g  ˆ v 

f  σo
2

 ~  Ff ,∞ .  (22) 

 For the purposes of data snooping in the case of correlated observations, the 

modified errors are calculated as 

PQPQvPv
vv
ˆˆ

   , ˆ ˆ
==  (23) 

where 1−
=QP  when Q is nonsingular, g

QP =  when Q is singular, or generally 

P = (Q+AUAT )g  when Q may be either singular or not. The test statistic is  

12
~

1

−

−

−

= f
i

ii t
f

f
t

τ

τ  (24) 

where the standardized residual is 
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and  
iiiii

vqq )()ˆ( ˆ

22
PQP

v
==   (26) 

is the weight coefficient of the modified error 
ii

v )ˆ(ˆ vP= . 

 A test for many outliers is obtained if the null hypothesis 0v =
2

:
o

H , that all 

outliers (of n2 observations) are equal to zero, is tested against the alternative hy-

pothesis 0v ≠
22

:H  that the outliers are present. The test statistic is 

      

T =

ˆ v 
2

T (P
2
−A

2
�

g
A
2

T )−1 ˆ v 
2

n
2
 ˆ σ 

2
  ,  

22 ,

2

2
~

 

nfnF
Tnf

nf
TF

−

−

−

=  (27) 

where the indicator (2) corresponds to n2 observations which are tested.  

 For the general linear hypothesis, the hypothesis to be tested involves k relations 

on the m parameters x. The general hypothesis :
o

H  H x = z, is tested against the 

alternative :
a

H  H x ≠ z and the test statistic, which follows the F distribution, is 
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 The alternative form of the above test  

fk

H

F
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ϕδϕ
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is valid only for the case 1−
=QP  and g

QP = . When the weight matrix is a g-

inverse of TAUAQM += , the quantity eSe ˆ ˆ
gT  cannot be obtained as the differ-

ence ϕϕϕδ ˆˆˆ −=
H

, where 
    
ˆ ϕ H =

ˆ v H
T

 P ˆ v H
 

is the least squares criterion which corre-

sponds to the adjustment with constraints H x = z and 
    
ˆ ϕ = ˆ v 

T
P ˆ v  is the least squares 

criterion of the simple model without constraints. 

 

5. Conclusions 

 The Least Squares Estimation is equivalent to the Best Linear Unbiased Estima-

tion in the case that the variance-covariance matrix Q of observations is nonsingu-

lar and the weight matrix is the regular inverse 1−
=QP .  

 In case the variance-covariance matrix of the observations is singular, and under 

appropriate conditions (that usually are fulfilled in the geodetic applications), a 

general inverse Qg can be used as the weight matrix P, as well as the pseudo-

inverse matrix ( +
=QP ). In this case the best linear unbiased estimation doesn’t 

depend on the choice of the g-inverse. 

 According to Rao and Mitra (1971b) a unified theory of least squares, with the 

simple choice for the weight matrix gTg )( AUAQMP +== , valid for all situa-

tions whether the variance-covariance matrix of observations Q is non-singular or 

not, whether there are constraints on the parameters or not and whatever may be 

the rank of the design matrix A. It must be noted that we do not need to choose a 

general inversion of   M, as all the expressions involved are invariant for any choice 

of 
    M

g . 
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