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Abstract: A general solution methodology is presented for the problem of fitting an ana-

lytically described surface to a set of points by minimizing the sum of the squares of the 

minimal distances of the points from the surface. Two types of analytical representation of 

the surface are considered, the implicit representation where the surface is defined by a 

condition equation between the three Cartesian coordinates and the parametric one where 

the Cartesian coordinates are expressed as functions of two curvilinear coordinates on the 

surface. Both nonlinear system of equations defining the optimal solution, as well as ap-

proaches based on linearization and successive iterations are presented. The general results, 

which depend on the form of the surface representation (implicit or parametric), are then 

specialized to the specific case of the surface of a triaxial ellipsoid. 

 
 

1. Introduction 

The problem of best fitting of an analytical surface (i.e. a surface described by 

mathematical equations) to a given set of points has applications in many scientific 

fields, such as pattern recognition, particle physics, computer graphics, computer 

vision, CAD-CAM applications, virtual reality, robotics, medical imaging, struc-

tural geology, astronomy, metrology, photogrammetry and geodesy. Various meth-

ods have been presented in the literature, which differ mainly on how the distance 

of each point from the given surface is measured, while an optimal surface choice 

is the one where the distances of the given points are collectively minimized is 

some specific sense. Here we will examine least squares best fitting approaches 

where one minimizes the sum of the squares of the distances of a set of given 

points from their orthogonal projection on the relevant surface. We will determine 

the general system of nonlinear equations (nonlinear normal equations), which has 

as solution the optimal parameter estimates for two type of surface representations: 

the “implicit representation” where the surface is represented by a single equation 

in the three Cartesian coordinates and the “parametric representation” where the 

surface is represented by expressing the Cartesian coordinates of surface points as 

functions of two curvilinear surface coordinates. Following the geodetic–surveying 

tradition, we will also present corresponding iterative approaches based on the so-

lution of the linearized least squares problem. Finally, the methods will be further 

elaborated by using the triaxial ellipsoid as an example of best fitting of a surface 

to a given set of points. 
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2. The problem of best fitting a surface to a given set of points as a 
mathematical constrained minimization problem 

Let [ ]
T

X Y Z=x  be the Cartesian coordinates of a point in three dimensions 

and let the surface π  under consideration be analytically represented by one of two 

forms, either by a single non-linear equation 
 
(1) ( , ) 0f =x p , 
 
where [ ]1 2

T

k
p p p=p �  is the set of k  parameters defining the shape and 

position of the surface, or in the alternative parameterized form 
 
(2) ( , , )u v=x x p , 
 
where u , v  is a pair of curvilinear coordinates on the surface. We will hereon call 

equation (1) the “implicit representation” and equation (2) the “parametric repre-

sentation”. 

A very popular (mostly in the mathematical literature) but rather naive best fitting 

method is the algebraic method, where one minimizes the sum of squares of the 

“algebraic distances” (see e.g. Späth, 2001, Li & Griffiths, 2004, Markovsky, 

Kukush & Van Huffel, 2004, Bertoni, 2010, Malyugina, Andrews & Séquin, 2013, 

Igudesman & Chickrin, 2014), i.e., the residuals 
 
(3) ( , ) 0

i i
r f ′= ≠x p , 

 
caused by the fact that a given set of n  points 

i
′x , 1,2,...,i n= , cannot exactly 

much the surface, or more precisely any of the surfaces within a family created by 

varying the values of the parameters defining its shape and its placement in space. 

Another type of distance is the “radial distance” which applies when the surface 

has a natural center with coordinates c . In this case the distance is between the 

point 
i
′x  and the intersection 

i
x  of the surface with the line joining the center c  

with the point 
i
′x . Of course, the only distance worth of the characterization “best 

fitting” is the “orthogonal distance” between 
i
′x  and its projection 

i
x  on the sur-

face, i.e. the closest point to 
i
′x  among all surface points. There is an extensive lit-

erature on the so-called “geometric fitting” approach, see, e.g. Hu & Shrikhande 

(1995), Turner, Anderson, Mason & Cox (1999), Watson (2000), Ahn, Rauh, Cho 

& Warnecke (2002), Ahn, Rauh & Warnecke (2002), Ahn, Westkamper & Rauh 

(2002), Watson (2002), Atieg & Watson (2003), Ahn (2004), Liu & Wang (2008), 

Rouhani & Sappa (2009), Flory & Hofer (2010), Chernov & Ma (2011),  Minh & 

Forbes (2012), Yu, Kulkarni & Poor (2012), Ruiz, Arroyave & Acosta (2013). The 

problem is typically solved by iterative techniques from optimization theory. We 

will follow here the geodesy-surveying tradition and in addition to the formulation 

of the nonlinear solution system (nonlinear normal equations) we will pursue itera-

tive approaches which are based on model linearization and exploitation of the ex-

isting well-known solutions of linear least squares problems with the precautions 

pin-pointed out by Pope (1972).  
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Another aspect of the methodological diversity has to do with how all point dis-

tances are collectively taken into account, e.g. by minimizing the sum of their abso-

lute values, or the sum of the squares of their absolute values (least squares ap-

proach) or the sum of some powers other that one and two (Watson, 2002,  Hel-

frich & Zwick 2002). 

Here we will consider only orthogonal or geometric distances and the least squares 

approach, where one minimizes the sum 
 

(4) 2

1 1 1

|| || ( ) ( ) min
n n n

T T

i i i i i i i

i i i

φ
= = =

′ ′= = = − − =∑ ∑ ∑e e e x x x x , 

 
where 

i i i
′= −e x x  is the vector joining each given point 

i
′x  with its projection 

i
x , 

and || || ( ) ( )T

i i i i i
′ ′= − −e x x x x  is the corresponding magnitude or orthogonal dis-

tance. The above sum must be minimized under the condition that 
i
x  are the pro-

jections on the surface of the corresponding given points 
i
′x . This amounts to two 

mathematical conditions for each point, the condition ( , ) 0
i

f =x p , which secures 

that the orthogonal projections lie on the surface and the projection (orthogonality) 

conditions 
i i i

π′= − ⊥e x x . To find the orthogonality conditions for the implicit 

representation approach, we need the gradient 
 

(5) ( , )

T T

f f f f
gradf

X Y Z

∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤
= = = =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

g g x p
x

, 

 
which is a vector perpendicular to the surface ( , ) 0f =x p  and the requirement that 

( , )
i i
=g g x p  is collinear with 

i i i
′= −e x x . This can be easily expressed by three 

conditions per point, such as the vanishing of the exterior product [ ]
i i
× =g e 0 , or 

the equality 
1 1

sgn( )
| | | |

T

i i i i

i i

=g g e e
g e

 of the corresponding unit vectors along 
i

g  

and 
i
e . In both cases, the three conditions per point are superfluous and only two 

of them must be used, because the position of a point on a surface is defined by 

only two parameters. The strong nonlinearity of the equality of the unit vector ap-

proach leads to quite complicated relations and is therefore not worth considering. 

The exterior product approach depends on which two out of the conditions 
 

 

0

[ ] [ ]( ) 0

0

Zi Yi i i

i i i i i Zi Xi i i

Yi Xi i i

g g X X

g g Y Y

g g Z Z

g e g x x

′− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′× = × − = − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′− −⎣ ⎦ ⎣ ⎦

 

(6) 

( ) ( )

( ) ( ) 0

( ) ( )

Zi i i Yi i i

Zi i i Xi i i

Yi i i Xi i i

g Y Y g Z Z

g X X g Z Z

g X X g Y Y

′ ′− − + −⎡ ⎤
⎢ ⎥′ ′= − − − =⎢ ⎥
⎢ ⎥′ ′− − + −⎣ ⎦

, 
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is taken into account. For a more appropriate set of conditions, note that if 

i i i
′= −e x x  is collinear with 

i
g , the first will be a scalar multiple of the second 

 
(7) 

i i i i i
ρ′= − =e x x g , 

 
where 

i
ρ , 1,2,...,i n= , are additional unknowns, which counterbalance the use of 

three conditions in (7) instead of the only two required. 

However, there is no need to implement any of these orthogonality conditions, nei-

ther two out of (6), nor (7). To understand this, consider the minimum 
,{ }

min

i

φ
p x

 of the 

target function 
1 2

( , , ,..., )
n

φ p x x x  with respect to the unknown parameters p  and 

{ }
i

x , 1,...,i n= , as a two-step minimum 
{ }

min min{ }
i

φ
p x

. In the first step a value of p  

is held fixed and the corresponding optimal values { ( )}
i

x p  are found. In the second 

step the procedure is repeated for all possible values of p  to find the global mini-

mum at p̂  and ˆˆ{ } { ( )}
i i
=x x p . In the first step the fixed values of p  define a 

known ellipsoid with fixed shape and placement, so that the minimization 
{ }

min

i

φ
x

 

simply finds the surface points 
i

x  which are closest to the respective given points 

i
′x , i.e. their projections on the fixed ellipsoid surface, and thus the orthogonality 

condition of 
i i
′ −x x  with respect to the ellipsoid surface is automatically fulfilled. 

In the case of the parametric representation ( , , )u v=x x p  of the surface, consider 

the two vectors ( , , )
u u

u v

u

∂
= =
∂

x
x x p , ( , , )

v v
u v

v

∂
= =
∂

x
x x p , which are tangent to the 

surface. To secure that x  is the projection on the surface of a given point ′x , the 

vector ′= −e x x  must be perpendicular to the surface or equivalently to the two 

tangent vectors 
u

x  and 
v

x  at x . The requirement that 
u
⊥x e , 

v
⊥x e , is guaran-

teed by the vanishing of the scalar products 
 

(8) 0
T

u
=x e ,     0

T

v
=x e . 

 
As in the case of the implicit representation, there is no need to implement these 

orthogonality conditions. Again the minimum 
,{ , }

min

i i
u v

φ
p

 of the target function 

1 1 2 2
( , , , , ,..., , )

n n
u v u v u vφ p  with respect to the unknown parameters p  and { , }

i i
u v , 

1,...,i n= , may be viewed as a two-step minimum 
{ , }

min min{ }
i i
u v

φ
p

, where in the first 

step a value of p  is held fixed defining a known ellipsoid with fixed shape and 

placement. The corresponding optimal values { ( ), ( )}
i i
u vp p  produce surface points 

( , )
i i

u vx  which are closest to the respective given points 
i
′x , i.e. their projections 

on the fixed ellipsoid surface. Thus the orthogonality condition of ( , )
i i i

u v′ −x x  

with respect to the ellipsoid surface is again automatically fulfilled. 

We are now in a position to define the optimization problem of the best fitting sur-

face in either of the two possible forms:  
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Implicit representation approach ( , ) 0f =x p : We need to minimize 
 

(9) 
1

( ) ( ) min
n

T

i i i i

i

φ
=

′ ′= − − =∑ x x x x , 

 
subject to the constraints 
 
(10) ( , ) 0

i
f =x p ,     1,2,...,i n= . 

 
In the above formulation we minimize a function of 3n k+  unknowns ( 3n  for 

i
x , 

k  for p ) subject to n  constraints. The difference unknowns minus conditions 

(3 ) 2n k n n k+ − = +  amounts to the actual number of unknowns since  two pa-

rameters are sufficient to determine the position of each 
i
x  on the particular sur-

face. 

Parametric representation approach ( , , )u v=x x p : We need to minimize 
 

(11) 
1 1

( ) ( ) [ ( , , )] [ ( , , )] min
n n

T T

i i i i i i i i i i

i i

u v u vφ
= =

′ ′ ′ ′= − − = − − =∑ ∑x x x x x x p x x p . 

 
If one attempts to impose the two conditions 
 

(12) [ ]( , , ) ( , , ) 0T

u i i i i i
u v u v′ − =x p x x p , 

 

(13) [ ]( , , ) ( , , ) 0T

v i i i i i
u v u v′ − =x p x x p ,     1,2,...,i n= . 

 
he will derive exactly the same solution as in the standard case where they are ig-

nored. We leave the proof of this statement as an interesting exercise to the reader. 

 

 

3. Nonlinear solution for the implicit representation approach 

In order to solve the constrained minimization problem of equations (9), (10), we 

must form the Lagrangean  
 

(14) 
1 1

( ) ( ) 2 ( , )
n n

T

i i i i i i

i i

fλ

= =

′ ′Φ = − − −∑ ∑x x x x x p  

 
and set to zero its derivatives with respect to the unknowns 

i
x , p , as well as, with 

respect to the Lagrange multipliers 
i
λ , thus recovering the constraints as part of the 

solution system. Since 
 

(15) 2( ) 2 ( , ) 2( ) 2 ( , ) 0
T T T

i i i i i i i i

i i

f
λ λ

∂Φ ∂
′ ′= − − − = − − − =

∂ ∂
x x x p x x g x p

x x

, 

 

(16) 
1 1

2 ( , ) 2 ( , )

n n

T

i i i i

i i

f
λ λ

= =

∂Φ ∂
= − ≡ − =

∂ ∂
∑ ∑x p z x p 0

p p

, 
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(17) 2 ( , ) 0
i

i

f
λ

∂Φ
= − =

∂
x p  

where  

(18) ( , ) ( , )

T

i i i

f∂⎛ ⎞
= =⎜ ⎟

∂⎝ ⎠
g x p g x p

x
, 

 

(19) ( , ) ( , )

T

i i i

f⎛ ⎞∂
= =⎜ ⎟

∂⎝ ⎠
z x p z x p

p

, 

 
the solution ˆ

i
x , p̂ , ˆ

i
λ  is provided by the “nonlinear normal equations” 

 
(20) ( , )

i i i i
λ′ − + =x x g x p 0 ,     1,2,...,i n= , 

 

(21) 
1

( , )
n

i i

i

λ

=

=∑ z x p 0 , 

 

(22) ˆˆ( , ) 0
i

f =x p ,     1,2,...,i n= . 
 
It is interesting to notice that although the orthogonality condition of 

i i
′ −x x  to the 

surface, as guaranteed by its collinearity (7) with the perpendicular to the surface 

gradient vector ( , )
i

g x p , has not been directly implemented, it results as part of the 

solution system (equation 20) and thus 
i i
′ −x x  is indeed perpendicular to the sur-

face as required. 

These equations can be solved either by various iteration schemes, as they stand or 

after elimination of some of the unknowns. The specific solution method strongly 

depends on the specific form of the surface representation equation ( , ) 0f =x p . 

When good approximate values 
0

x  are known for the unknown parameters in the 

above nonlinear equations of the form ( ) =f x 0 , an iteration scheme can be based 

on the linearization by Taylor expansion retaining only first order terms in 

0
δ = −x x x . Thus 

0 0 0
( ) ( ) ( )δ δ

∂
≈ + ≡ + =

∂

f
f x f x x x f J x 0

x
, and since the Jacobean 

matrix is nonsingular in general, 1

0
ˆδ

−

= −x J f . The estimates 
0

ˆ ˆx x xδ= + =  
1

0 0
x J f

−

= −  are the used as approximate values for the next iteration step and so 

on, until convergence is achieved. This is the well-known Newton’s iterative solu-

tion (see, e.g. Nocedal & Wright, 1999, Ortega & Rheinboldt, 2000).  

 

 

4. Solution with linearization and iterations for the implicit representation 
approach 

A typical approach in geodesy and surveying for treating nonlinear least squares 

problems is the linearization of the relevant models, the exploitation of the corre-
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sponding linear problem solution, and its further improvement through iterations 

(Pope, 1972). Since the data 
i
′x  are already linear in the unknowns 

i
x  

(
i i i
′ = +x x e ), we only need to linearize the nonlinear constraints using approxi-

mate values 
0i

x , 
0

p  for the unknowns 
0i i i

δ= +x x x , 
0

δ= +p p p . In fact we only 

need to find the approximate values 
0

p , e.g. by the relatively easy solution of the 

algebraic method (see below). The values 
0i

x  may be found by projecting the data 

points 
i
′x  on the approximate surface defined by the 

0
p  (see e.g. the approach pro-

posed in appendix A). In such a case it will hold that 
0 0

( , ) 0
i

f =x p , but for the 

sake of generality we will make no use of this simplification. The required lineari-

zations are 
 

(23) 
0 0 0 0 0

00

( , ) ( , ) 0T T

i i i i i i i

i

f f
f f fδ δ δ δ

⎛ ⎞ ⎛ ⎞∂ ∂
= + + = + + =⎜ ⎟ ⎜ ⎟

∂ ∂⎝ ⎠⎝ ⎠
x p x p x p g x z p

x p

, 

 1,2,...,i n= , 
 
where 

0 0 0
( , )

i i
f f= x p , 

0 0 0
( , )

i i
=g g x p , 

0 0 0
( , )

i i
=z z x p . The “observation” equa-

tions 
i i i
′ = +x x e  take the linearized form 

 
(24) 

0i i i i i
δ′≡ − = +b x x x e ,     1,2,...,i n= . 

 
For all points 1,2,...,i n=  the observation equations become 
 

(25) 

1 10 1 1

0n n n n

δ

δ

δ

′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ = + ≡ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x e

b x e

x x x e

� � � , 

 
while the constraints become 
 

(26) 

10 10 1 10

0

0 0 0

0

0

T T

T

T T

n n n n

f

f

δ

δ δ δ

δ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ + ≡ + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

g x z

p f G x Z p 0

g x z

�

� � � � � �

�

. 

 
This has the form of a least squares problem = +b Ax e , min

T
=e Pe , with con-

straints + + =Cx Dy d 0 , which differ from the standard well-known “observations 

equations with linear constraints” case, because the constraints contain additional 

parameters y  not present in the observation equations. The required solution is 

derived in appendix B, and the relevant equations (B10) and (B11), take in our spe-

cific case, where =P I , =A I  and  thus =� I , =u b , the simplified form 
 

(27) 
1

1 1ˆ ( ) ( ) ( )T T T T
−

− −⎡ ⎤= − +⎣ ⎦y D CC D D CC Cb d . 

 

(28) 1 1ˆ ˆ( ) ( ) ( )T T T T− −

= − + −x b C CC Cb d C CC Dy . 
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Applying the above equations with T
→C G , →D Z , 

0
→d f , ˆ ˆδ→x x , ˆδ→y p , 

gives the desired solution 
 

(29) 
1

1 1

0
ˆ ( ) ( ) ( )T T T T T

δ
−

− −⎡ ⎤= − +⎣ ⎦p Z G G Z Z G G G b f . 

 

(30) 1 1

0
ˆˆ ( ) ( ) ( )T T T

δ δ
− −

= − + −x b G G G G b f G G G Z p . 
 
Setting 
 

(31) 
0 0 0

T

i i i
κ = g g ,     1,...,i n= , 

 
it is easy to show that 
 

(32) 

10

1

0

1

( )

1

T

n

κ

κ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

G G

0

�

� � �

�

, 

 

(33) 

10 1 10 10

0

0 0 0

( )

( )

T

T

T

n n n n

f

f

′⎡ ⎤− +
⎢ ⎥

+ = ⎢ ⎥
⎢ ⎥′ − +⎣ ⎦

g x x

G b f

g x x

� , 

 

(34) 1

01 0

10 0

1 1
( )T T

n

n
κ κ

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Z G G z z� , 

 

(35) 1

0 0

1 10

1
( )

n

T T T

i i

i κ

−

=

=∑Z G G Z z z , 

 
and the solution (29), (30) takes the explicit form 
 

(36) 

1

0 0 0

0 0 0

1 10 0

( )1
ˆ

Tn n

T i i i i

i i i

i ii i

f
δ

κ κ

−

= =

′⎛ ⎞ ⎛ ⎞− +
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

g x x
p z z z , 

 

(37) 0 0 0

0 0 0 0

0 0

( ) 1
ˆˆ

T

Ti i i i

i i i i i i

i i

f
δ δ

κ κ

′ − +
′= − − −

g x x
x x x g g z p . 

 
The estimates 

0
ˆ ˆ

i i i
δ= +x x x , 

0
ˆ ˆδ= +p p p  are the approximate values for the next 

iteration step, until convergence is achieved. We may also use only equation (36) 

to obtain 
0

ˆ ˆδ= +p p p  and retrieve instead the estimates ˆ
i
x  by projecting each 

i
′x  

on the ellipsoid defined by p̂  using any projection algorithm (see e.g. the proposed 

approach in appendix A). 
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5. Nonlinear solution for the parametric representation approach 

The minimization problem to be solved in this case is defined by equation (11) and 

has target function 

(38) 
,{ , }

1

[ ( , , )] [ ( , , )] min
i i

n

T

i i i i i i
u v

i

u v u vφ
=

′ ′= − − =∑
p

x x p x x p . 

 
Setting the derivatives of φ  with respect to the unknowns equal to zero, using the 

subscripts ,u  v  to denote partial derivatives of ( , , )u vx p  with respect to these pa-

rameters, e.g. /
u

u= ∂ ∂x x , /
v

v= ∂ ∂x x , /
p
= ∂ ∂x x p  , etc., and the subscript i  to 

denote evaluation for 
i

u , 
i
v , we have 

 

(39) 2( ) 2( ) 0
T T

i i i i ui

i i
u u

φ∂ ∂
′ ′= − − = − − =

∂ ∂

x

x x x x x , 1,2,...,i n= , 

 

(40) 2( ) 2( ) 0
T T

i i i i vi

i i
v v

φ∂ ∂
′ ′= − − = − − =

∂ ∂

x

x x x x x , 1,2,...,i n= , 

 

(41) 
1 1

2 ( ) 2 ( )

n n
T Ti

i i i i pi

i i

φ

= =

∂∂
′ ′= − − = − − =

∂ ∂
∑ ∑

x
x x x x x 0

p p
. 

 
Therefore the system of nonlinear equations (nonlinear normal equations) to be 

solved is 

(42) 
1

( ) 0
n

T T

pi i pi i

i=

′ − =∑ x x x x , 

 
(43) ( ) 0T

ui i i
′ − =x x x ,     1,2,...,i n= , 

 
(44) ( ) 0T

vi i i
′ − =x x x ,     1,2,...,i n= . 

 
It is interesting to notice that although the orthogonality conditions (12), (13) have 

not been directly implemented, they result as part of the solution system (equations 

43 and 44) and thus 
i i
′ −x x  is indeed perpendicular to the surface as required. 

In order to write the solution system in a more compact way we introduce the new 

functions 

(45) T

u u
β = x x , T

v v
β = x x , 

 

(46) T

u u
ε ′= x x , T

v v
ε ′= x x , 

 

(47) 
T

p p
=b x x , 

T

p p
′=e x x . 

 
In terms of the above functions the solution system for the unknowns 

i
u , 

i
v  , p  

takes the form 

(48) 
1 1

( , , , ) ( , , )
n n

p i i i p i i

i i

u v u v

= =

′ =∑ ∑e x p b p , 
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(49) ( , , , ) ( , , )
u i i i u i i

u v u vε β′ =x p p , 1,2,...,i n= , 
 
(50) ( , , , ) ( , , )

v i i i v i i
u v u vε β′ =x p p , 1,2,...,i n= , 

 
which is a system of 2k n n n k+ + = +  nonlinear equations in the 2n k+  un-

knowns 
i

u , 
i
v  and p . Further development depends on the specific form of the 

function ( , , )u vx p  from which the forms of the functions defined above derive, and 

on the choice of a particular solution method. 

 

 

6. Solution with linearization and iterations for the parametric representa-
tion approach 

The nonlinear observation equation in the case of the parametric representation is 
 
(51) ( , , )

i i i i
u v′ = +x x p e . 

 
We shall denote with subscripts derivatives with respect to the corresponding pa-

rameters, e.g. /
u

u= ∂ ∂x x , /
v

v= ∂ ∂x x , /
p
= ∂ ∂x x p , etc., while an additional sub-

script “ 0i ” denotes evaluation at known approximate values 
0i

u , 
0i

v , e.g. 

0 0 0
( , )

i i i
u v=x x , 

, 0 0 0

( , )
u i u i i

u v=x x , 
, 0 0 0

( , )
v i v i i

u v=x x , etc. Linearization by Taylor 

expansion retaining only first order terms, with 
0i i i

u u uδ= + , 
0i i i

v v vδ= + , gives 
 

(52) 
0 , 0 , 0 , 0

( , , )
i i i p i u i i v i i
u v u vδ δ δ= + + +x p x x p x x , 

 
The observation equations take the linearized form  

 
0 , 0 , 0 , 0i i p i u i i v i i i

u vδ δ δ′ = + + + +x x x p x x e  

or 

(53) 
0 , 0 , 0 , 0i i p i u i i v i i i

u vδ δ δ′ − = + + +x x x p x x e . 
 

For all points 1,2,...,i n=  the linearized observation equations are 
 

(54) 

1 10 ,10 ,10 1

0 , 0 , 0

0

0

p u

n n p n u n n

u

u

x x x x

b p

x x x x

�

� � � � � �

�

δ

δ

δ

′ ⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥≡ = + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

 

 

,10 1 1

, 0

0

0

v

v n n n

v

v

x e

x e

�

� � � � �

�

δ

δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
p u v p u v

δ

δ δ δ δ

δ

⎡ ⎤
⎢ ⎥⎡ ⎤≡ + + + = + = +⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

p

A p A u A v e A A A u e Ax e

v

. 
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The normal equations are ˆ =�x u  with 
 

(55) 

T T T

p p p u p v p pu pv

T T T T

u p u u u v pu u uv

T T T T T

v p v u v v pv uv v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= ≡⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

A A A A A A � � �

� A A A A A A � � �

A A A A A A � � �

,    

T

p p

T

u u

T

v v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ≡⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A b u

u A b u

A b u

. 

 
Introducing 
 

(56) 
, 0 , 0

T

i p i p i
=E x x , 

, 0 , 0

T

ui p i u i
=c x x , 

, 0 , 0

T

vi p i v i
=c x x , 

 

(57) 
, 0 , 0

T

uui u i u i
γ = x x , 

, 0 , 0

T

uvi u i v i
γ = x x , 

, 0 , 0

T

vvi v i v i
γ = x x , 

 

(58) 
, 0

T

ui u i i
ε ′= x x , 

, 0 0

T

ui u i i
β = x x , 

, 0 0

T

vi v i i
β = x x , 

 

(59) 
, 0 0

T

i p i i
=b x x , 

, 0

T

i p i i
′=d x x , 

 
it is easy to show that 

(60) 
, 0 , 0

1 1

n n
T T

p p p p i p i i

i i= =

= = =∑ ∑� A A x x E , 

 

(61) [ ]
,10 ,10 , 0 , 0 1

T T T

pu p u p u p n u n u un
⎡ ⎤= = =⎣ ⎦� A A x x x x c c� � , 

 

(62) [ ]
,10 ,10 , 0 , 0 1

T T T

pv p v p v p n v n v vn
⎡ ⎤= = =⎣ ⎦� A A x x x x c c� � , 

 

(63) 

,10 ,10 1

, 0 , 0

0 0

0 0

T

u u uu

T

u u u

T

u n u n uun

γ

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

x x

� A A

x x

� �

� � � � � �

� �

, 

 

(64) 

1
0

0

vv

T

v v v

vvn

γ

γ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

� A A

�

� � �

�

, 

1
0

0

uv

T

uv u v

uvn

γ

γ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

� A A

�

� � �

�

, 

 

(65) 
, 0 0

1 1

( ) ( )
n n

T T

p p p i i i i i

i i= =

′= = − = −∑ ∑u A b x x x d b , 

 

(66) 

,10 1 10 1 1

, 0 0

( )

( )

T

u u u

T

u u

T

u n n n un un

ε β

ε β

′⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ − −⎣ ⎦⎣ ⎦

x x x

u A b

x x x

� � , 

 

,10 1 10 1 1

, 0 0

( )

( )

T

v v v

T

v v

T

v n n n vn vn

ε β

ε β

′⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ − −⎣ ⎦⎣ ⎦

x x x

u A b

x x x

� � . 
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Noting that the matrix u uv

T

uv v

⎡ ⎤
⎢ ⎥
⎣ ⎦

� �

� �
 has all its submatrices diagonal, and recalling 

that multiplication of diagonal matrices is commutative, it is easy to verify that 
 

(67) 

1
1 1

1 1

u uv v uv

T

uv v uv u

−

− −

− −

⎡ ⎤−⎡ ⎤
= ⎢ ⎥⎢ ⎥

−⎣ ⎦ ⎣ ⎦

� � Δ � Δ �

� � Δ � Δ �
, 

 
where 
 

(68) 

2

1 1 1 1

2

2

0 0

0 0

uu vv uv

u v uv

uun vvn uvn n

γ γ γ δ

γ γ γ δ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = ≡⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

Δ � � �

� �

� � � � � �

� �

, 

 2

i uui vvi uvi
δ γ γ γ= − . 

 
We will analytically invert  
 

(69) 

1

p pu pv p pu pv

T T

u uv u uvpu pu

T TT T

uv v uv vpv pv

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

� � � Q Q Q

� � Q Q� Q

� � Q Q� Q

, 

 
using the well-known relations 
 

(70) 

1

T T

−

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A B X Y

B D Y W
, 

1 1( )T− −

= −X A BD B , 

 
1−

= −Y XBD , 
1 1 T− −

= −W D D B Y , 
 
to obtain the recursive computation formulas  
 
(71) 

( )
1

1 1 1 1T T T T

p p pu v pu pu uv pv pv uv pu pv u pv
Q � � Δ � � � Δ � � � Δ � � � Δ � �

−

− − − −

= − + + − , 

 

(72) 
1 1( )

pu p pu v pv uv

− −

= − +Q Q � Δ � � Δ � , 
 

(73) 
1 1( )

pv p pu uv pv u

− −

= −Q Q � Δ � � Δ � , 
 

(74) 
1 1 1( )T T

u v v pu uv pv pu

− − −

= + − +Q Δ � Δ � � Δ � � Q , 
 

(75) 
1 1 1( )T T

uv uv v pu uv pv pv

− − −

= − + − +Q Δ � Δ � � Δ � � Q , 
 

(76) 
1 1 1( )T T

v u uv pu u pv pv

− − −

= + −Q Δ � Δ � � Δ � � Q . 
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With these submatrices the final solution can be calculated as 
 

(77) 

ˆ

ˆ

ˆ

p pu pv p

T

pu u uv u

T T

pv uv v v

δ

δ

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

p Q Q Q u

u Q Q Q u

v Q Q Q u

. 

 
The obtained estimates 

0
ˆ ˆδ= +p p p , 

0
ˆ ˆδ= +u u u , 

0
ˆ ˆδ= +v v v  are used as ap-

proximate values in the next iteration step and so on until convergence is achieved. 

One can also use any appropriate algorithm to project the points 
i
′x  on the ellipsoid 

with parameters 
0

ˆ ˆδ= +p p p  (see e.g. the proposed approach in appendix A) to 

obtain estimates ˆ
i

u , ˆ
i
v , which together with p̂  will serve as approximate values 

for the next iteration step. Thus only ˆ
p p pu u pv vδ = + +p Q u Q u Q u  needs to be used. 

 

 

7. Application to the case of the triaxial ellipsoid 

Implicit representation – Nonlinear normal equations 

With the values of ( , , )f x a b , g , and z , derived in appendix A for the case of the 

triaxial ellipsoid, the nonlinear normal equations (20)-(22) take the specific form 
 

(78) ˆ ˆ ˆˆ ˆˆˆ ˆ ˆ ˆ(2 ) [2 ( ) ]T

i i i i i i i i
λ λ′ ′− + + = − + + =x x Ax b x x Q x a b 0 ,     1,2,...,i n= . 

 

(79) 
1

ˆ ˆ( )
n

i i

i

λ

=

=∑ q x 0 , 

 

(80) 
1

ˆ

ˆ

n

i i

i

λ

=

=∑ x 0 , 

 

(81) ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ1 ( ) 1 0T T T T

i i i i i
+ + = + + =x Ax b x q x a b x ,     1,2,...,i n= . 

 
with ( )q x  and ( )Q x  as defined in appendix A, equation (A15). The solution is ob-

tained by using any of the standard methods for solving systems of nonlinear equa-

tions, which typically implement an iteration process. 

 

Implicit representation – Linearization 
 
With the values derived in appendix A we have 
 

(82) 
0 0 0 0 0 0 0 0 0 0 0 0

( , ) 1 ( ) 1T T T T

i i i i i i i
f f= = + + = + +x p x A x b x q x a b x  

 

(83) 
0 0 0 0 0 0 0

(2 ) 2 ( )T
i i i
= + = +g A x b Q x a b ,  

 

(84) 0

0 0 0

0

( )
( )

T
iT T

i i i

i

⎡ ⎤
⎡ ⎤= = ⎢ ⎥⎣ ⎦

⎣ ⎦

q x
z q x x

x
, 
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(85) 
0 0 0 0 0 0 0 0 0 0 0 0 0

(2 ) (2 ) [2 ( ) ] [2 ( ) ]T T T T

i i i i i
κ = + + = + +A x b A x b Q x a b Q x a b , 

 
and the solution (36), (37) takes the explicit form 
 

(86) 

1

0 0 0 0

1 10 0

0 0 0 0

1 10 0

1 1
( ) ( ) ( )

ˆ
ˆ

ˆ 1 1
( )

n n

T T

i i i i

i ii i

n n

T T

i i i i

i ii i

q x q x q x x
a

p
b

x q x x x

δ κ κ
δ

δ

κ κ

−

= =

= =

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥= = − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑
 

 

0 0 0 0 0

0

1 0

0 0 0 0 0

0

1 0

(2 ) ( )
( )

(2 ) ( )

Tn

i i i i

i

i i

Tn

i i i i

i

i i

f

f

A x b x x
q x

A x b x x
x

κ

κ

=

=

′⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥′+ − +
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
, 

 

(87) 0 0 0 0 0

0 0 0 0

0

(2 ) ( )
ˆ (2 )

T

i i i i

i i i i

i

f
δ

κ

′+ − +
′= − − + −

A x b x x
x x x A x b  

 
0 0 0 0 0

0

1 ˆˆ(2 ) ( )T T

i i i

i

δ δ
κ

⎡ ⎤− + +⎣ ⎦A x b q x a x b ,     1,2,...,i n= . 

 
It is also possible to use only equation (86) to compute ˆδp  and 

0
ˆ ˆδ= +p p p . Esti-

mates ˆ
i
x  can be obtained by projecting each 

i
′x  on the ellipsoid defined by p̂  us-

ing any projection algorithm (see e.g. the proposed approach in appendix A). 

 

Parametric representation – Nonlinear normal equations 
 
In order to derive the nonlinear normal equations of the form (48)-(50) we just 

need to compute the relevant functions, utilizing the results from appendix A. With 

( )T
= +x R x d , T

u u
=x R x , T

v v
=x R x  we obtain 

 

(88) 2 2 2( )cos sin sin ( sin cos )sinT T

u u u Y X X X Y Y
a a u u v d a u d a u vβ = + = − + − +x x d x , 

 

(89) T T

v v v
x x d xβ = + =  

2 2 2 2 2( cos sin )sin cos ( cos sin )cos sin
X Y Z X X Y Y Z Z

a u a u a v v d a u d a u v d a v= + − + + − , 
 

(90) T T

u u
ε ′= x R x , T T

v v
ε ′= x R x , 

 

(91) ( )

( )

T T T

p p p

⎡ ⎤
⎢ ⎥= = + = +⎢ ⎥
⎢ ⎥+⎣ ⎦

0

b x x x R x d x d

D x d

, 

[( ) ]
T

T

p p

′⎡ ⎤− + ×
⎢ ⎥

′ ′= = ⎢ ⎥
⎢ ⎥′⎣ ⎦

Ω x d Rx

e x x Rx

DRx

. 

 
With the above values, equation (48) splits into three equations 
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(92) 
1

( ) [{ ( , , ) } ] ( )
n

T

i i i

i

u v

=

′+ × =∑Ω θ x α d R θ x 0 , 

 

(93) 
1 1

( ) ( , , )
n n

i i i

i i

u v n

= =

′ − − =∑ ∑R θ x x α d 0 , 

 

(94) 
1

( , ) ( ) ( , , )
n

i i i i i

i

u v u v

=

′⎡ ⎤− − =⎣ ⎦∑D R θ x x α d 0 , 

 
where the factor ( )TΩ θ  in (92) can be deleted due to the fact that in general 

2 3
det cos cos2 0θ θ= − ≠Ω .  

Equations (49) and (50) become 
 

(95) ( ) ( , , ) ( , , , ) 0T T

i u i i u i i
u v u vβ′ − =x R θ x α α d , 1,2,...,i n= , 

 

(96) ( ) ( , , ) ( , , , ) 0T T

i v i i v i i
u v u vβ′ − =x R θ x α α d , 1,2,...,i n= . 

 
Again, (92)-(96) is a system of 3 3 3 2 9 2n n+ + + = +  nonlinear equations in 

9 2n+  unknowns θ , α , d  and { , }
i i
u v , 1,...,i n= , to be solved by one of the vari-

ous existing methods. 

 

Parametric representation – Linearization 
 
In order to apply the general solution (60)-(66) and (71)-(77), we must use the re-

sults of appendix A and evaluate the necessary functions for approximate values 

0i
u , 

0i
v , 

0X
a , 

0Y
a , 

0Z
a , 

0
θ , 

0
d . With 

0 0
( )=R R θ  and 

0 0
( )=Ω Ω θ  and setting 

 
(97) 

0 0i i
′ ′=x R x , 

0 0 0
( , )

i i i
u v=D D , 

 
we have 
 

(98) 

2

0 0 0 0 0 0 0 0 0 0

, 0 , 0 0 0 0 0

2

0 0 0 0 0 0

[( ) ] [( ) ] [( ) ]

[( ) ]

[( ) ]

T T T

i i i

T

i p i p i i i

i i i i

Ω x d Ω Ω x d Ω x d D

E x x x d Ω I D

D x d Ω D D

⎡ ⎤− + × − + × − + ×
⎢ ⎥

= = + ×⎢ ⎥
⎢ ⎥+ ×⎣ ⎦

, 

 

(99) 

0 , 0 0 0

, 0

0 , 0

[ ]( )
T

u i i

ui u i

i u i

⎡ ⎤× +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Ω x x d

c x

D x

, 

0 , 0 0 0

, 0

0 , 0

[ ]( )
T

v i i

vi v i

i v i

⎡ ⎤× +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Ω x x d

c x

D x

, 

 

(100) 2 2 2 2 2

0 0 0 0 0
( sin cos )sin

uui X i Y i i
a u a u vγ = + , 

 

(101) 2 2

0 0 0 0 0 0
( )sin cos sin cos

uvi Y X i i i i
a a u u v vγ = − , 

 

(102) 2 2 2 2 2 2 2

0 0 0 0 0 0 0
( cos sin )cos sin

vvi X i Y i i Z i
a u a u v a vγ = + + , 
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(103) 
0 , 0ui i u i

ε
Τ
′= x x , 

0 , 0

T

vi i v i
ε ′= x x , 

 

(104) 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0
( )cos sin sin ( sin cos )sin

ui Y X i i i X X i Y Y i i
a a u u v d a u d a u vβ = − + − +  

 

(105) 2 2 2 2 2

0 0 0 0 0 0 0
( cos sin )sin cos

vi X i Y i Z i i
a u a u a v vβ = + − +  

 
0 0 0 0 0 0 0 0 0 0

( cos sin )cos sin
X X i Y Y i i Z Z i

d a u d a u v d a v+ + −  
 

(106) 
0 0

0 0 0
( )

i i

T

i i

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

0

b x d

D x d

, 

0 0 0 0

0

0 0

[( ) ]
T

i i

i i

i i

′⎡ ⎤− + ×
⎢ ⎥

′= ⎢ ⎥
⎢ ⎥′⎣ ⎦

Ω x d x

d x

D x

. 

 
With the above values we can directly formulate all the necessary submatrices of 

the normal equations (60)-(66) and (71)-(76), in order to calculate the solution (77), 

or just the solution for ˆδp , completed by projections of the 
i
′x  on the surface of 

the resulting ellipsoid to obtain the ˆ
i

x  estimates. 

 

Initial approximate values using the algebraic approach 
 
In any iterative solution approach it is essential to have good initial approximate 

values so that convergence can be achieved. Such desired values can be provided 

by the algebraic approach where one minimizes instead 
 

(107) 2

1

( , ) min
n

i

i

fφ
=

′= =∑ x p . 

 
Setting the derivatives of the above target function with respect to the single pa-

rameters p  we obtain 
 

(108) 
1 1

2 ( , ) ( , ) ( , ) ( , )

n n

T

i i i i

i i

f
f f

φ

= =

∂ ∂
′ ′ ′ ′= = =

∂ ∂
∑ ∑x p x p x p z x p 0

p p

, 

 
and the nonlinear normal equations for the algebraic approach become 
 

(109) 
1

ˆ ˆ( , ) ( , )
n

i i

i

f
=

′ ′ =∑z x p x p 0 . 

 
For application to the case of the ellipsoid we need to replace  
 

(110) 
( )

ˆ( , )
i

i

i

′⎡ ⎤
′ = ⎢ ⎥′⎣ ⎦

q x
z x p

x
 , ˆˆ ˆ( , ) ( ) 1T T

i i i
f ′ ′ ′= + +x p q x a x b   

 
to obtain 
 

(111) 
1

( )
ˆˆ( ) 1

n

i T T

i i

i i=

′⎡ ⎤
⎡ ⎤′ ′+ + =⎢ ⎥ ⎣ ⎦′⎣ ⎦

∑
q x

q x a x b 0
x

. 



Fitting Analytical Surfaces to Points: General Approaches and Applications  

to Ellipsoid Fitting 

97 

 

This is a linear system in the unknowns 
ˆ

ˆ

ˆ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a
p

b
 and has solution 

 

(112) 

1

1 1 1

1 1 1

( ) ( ) ( ) ( )
ˆ

ˆ
( )

n n n

T T

i i i i i

i i i

n n n

T T

i i i i i

i i i

−

= = =

= = =

⎡ ⎤ ⎡ ⎤
′ ′ ′ ′ ′⎢ ⎥ ⎢ ⎥⎡ ⎤

⎢ ⎥ ⎢ ⎥= −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ′ ′ ′ ′ ′⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

q x q x q x x q x
a

b
x q x x x x

 

 
where 
 

(113) 

i

i i

i

X

Y

Z

′⎡ ⎤
⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥′⎣ ⎦

x , 2 2 2( ) 2 2 2
T

i i i i i i i i i i
X X Y X Z Y Y Z Z′ ′ ′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤= ⎣ ⎦q x . 
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Appendix A: Analytical representation of the triaxial ellipsoid 

The implicit representation 
 
Let [ ]

T
X Y Z=x  be the coordinates of any point on the surface of a triaxial ellip-

soid with respect to a reference system with origin at the ellipsoid center and axes 

along the ellipsoid axes. The well-known equation of the triaxial ellipsoid is 
 

(A1) 

2

2 2 2

2

2 2 2

2

0 0

1 0 0 1

0 0

X

T

Y

X Y Z

Z

X

X Y Z
X Y Z Y

Z

α

α

α α α

α

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤= + + = ≡ =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

x Λx , 

 
where 

X
α , 

Y
α , 

Z
α  are the ellipsoid semi-axes. If [ ]

T
X Y Z=x  are the coordi-

nates of the same point in an arbitrary reference system then it holds that 
 

(A2) ( )= −x R x d , ( )T T
= + = +x R x d R x d , ( =d Rd ), 

 
where [ ]

T

X Y Z
d d d=d  are the coordinates of the ellipsoid center in the arbitrary 

reference system and R  an orthogonal rotation matrix. Therefore, the ellipsoid 

equation in the arbitrary reference system becomes 
 

(A3) 1 ( ) ( ) 2 1
T T T T T T T T

= − − = − Λ + =x d R ΛR x d x R ΛRx d R Rx d R ΛRd , 
 
or 
 

(A4) 
1 2

1
1 1

T

T T T

T T T T
x R ΛR x R ΛRd x

d R ΛRd d R ΛRd

⎛ ⎞ ⎛ ⎞
− + =⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
 

 1 0
T T

x Ax b x= + + = , 
 
where  
 

(A5) 
1

1

T T

T T
= =

−

A R ΛR A
d R ΛRd

, 
2

1

T

T T
= −

−

b R ΛRd
d R ΛRd

. 

 
Here we have “normalized” equation (A3) by dividing with 1

T T
−d R ΛRd  to make 

the constant term equal to 1. For alternative normalizations see Turner, Anderson, 

Mason & Cox (1999). 

We have now a simple algebraic representation in terms of the nine ellipsoid pa-

rameters 
 

(A6) 
11 12 13 22 23 33

[ ]
T

A A A A A A=a , 
1 2 3

[ ]
T

b b b=b . 
 
If these parameters are determined one should like to convert them to the parame-

ters, 
X

a , 
Y

a , 
Z

a , 
X

d , 
Y

d , 
Z

d  and three parameters defining the rotation matrix 

R . To solve this inversion problem we may use a standard diagonalization algo-
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rithm to obtain 

(A7) 
T

=A R MR , 
 
which gives directly the required matrix R , and the diagonal matrix M  satisfying 
 

(A8) 
1

1
T T

=

−

M Λ
d R ΛRd

, ⇒  
2

2
1

T T

T T
− = − =

−

R MRd R ΛRd b
d R ΛRd

. 

 
Solving the last equation for d  we obtain 
 

(A9) 
11

2

T −

= −d R M Rb . 

 

It remains to solve 
1

1
T T

=

−

M Λ
d R ΛRd

 for Λ , which contains the semiaxes 
X

a , 

Y
a , 

Z
a . Setting 

11

2

−

= = −q Rd M Rb  the equation to solve becomes 

1

1
T

=

−

M Λ
q Λq

, with corresponding diagonal elements satisfying 

 

(A10) 
2 2 2

1 11 2 22 3 33

1

1
ii ii

M
q q q

= Λ

Λ + Λ + Λ −

, 

 2 2 2

1 11 2 22 3 33
( )

ii ii ii
q q q M MΛ + Λ + Λ + Λ = ,      1 1,2,3= . 

 
The solution of the last system is 
 

(A11) 

1
2 2 2

11 11 1 11 2 11 3 11

2 2 2

22 22 1 22 2 22 3 22

2 2 2

33 33 1 33 2 33 3 33

1

1

1

M q M q M q M

M q M q M q M

M q M q M q M

−

⎡ ⎤Λ −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Λ = −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥Λ −⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 
Thus the transformation of A  and b  into R , d  and Λ  ( , ,

X Y Z
α α α ) has been 

completed. 

The algebraic representation has also the alternative form 
 

(A12) ( , , ) 1 ( ) 1 0T T T Tf = + + = + + =x a b x Ax b x q x a b x . 
 
This results from the fact that 
 

(A13) 

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

A A A X A X A Y A Z

A A A Y A X A Y A Z

A A A Z A X A Y A Z

Ax

+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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11

12

13

22

23

33

0 0 0

0 0 0 ( )

0 0 0

T

A

A
X Y Z

A
X Y Z

A
X Y Z

A

A

Q x a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= ≡⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
and 
 

(A14) ( ) ( )T T T T
= ≡x Ax x Q x a q x a , 

 
where 
 

(A15) 

0 0

0

0
( )

0 0

0

0 0

X

Y X

Z X

Y

Z Y

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q x , 

2

2

2

0 0

0 2

0 2
( ) ( )

0 0

0 2

0 0

X X

Y X XY
X

Z X XZ
Y

Y Y
Z

Z Y YZ

Z Z

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

q x Q x x . 

 
We need also to compute the following derivatives 
 

(A16) 2 2 ( )

T

Tf∂⎛ ⎞
= = + = +⎜ ⎟

∂⎝ ⎠
g Ax b Q x a b

x
, 

 

(A17) 
( )

( )

T T

T
T Tf f f⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎡ ⎤

⎡ ⎤= = =⎜ ⎟ ⎢ ⎥⎣ ⎦⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠

q x
z = q x x

xp a b
. 

 

The parametric representation 
 
Among various parametric representations of the triaxial ellipsoid the one more 

convenient for our purpose has the following form in the reference system 

( )= −x R x d  attached to the ellipsoid center and axes 
 

(A18) 

cos sin

sin sin ( , , , , )

cos

X

Y X Y Z

Z

X u v

Y u v u v

Z v

α

α α α α

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

x x . 

 
This form follows by rewriting the implicit representation as 

2 2 2( / ) ( / ) ( / ) 1
X Y Z

X Y Zα α α+ + =  and thus realizing that /
X

X α , /
Y

Y α , /
Z

Z α  

are the components of a unit vector n  which can be expressed in terms of its longi-

tude u  (0 2u π≤ < ) and its co-latitude v  (0 v π≤ ≤ ) as 
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[ ]cos sin sin sin cos

T

u v u v v=n . In the arbitrary reference system the represen-

tation becomes 
 

(A19) ( ) [ ( , , ) ] ( , , )T
u v u v= + =x R θ x α d x p , 

 

where 
1 2 3

[ ]
T

X Y Z X Y Z
d d dθ θ θ α α α=p , [ ]

T

X Y Z
α α α=α , [ ]

T

X Y Z
d d d=d  and 

1 2 3
[ ]

T
θ θ θ=θ  are the rotation angles around the three axes, which define the rota-

tion matrix 
3 3 2 2 1 1

( ) ( ) ( ) ( )θ θ θ=R θ R R R . 

We will need the derivatives 
 

(A20) 

sin sin

cos sin

0

X

u Y

u v

u v

u

α

α

−⎡ ⎤
∂ ⎢ ⎥≡ = ⎢ ⎥∂

⎢ ⎥⎣ ⎦

x

x , 

cos cos

sin cos

sin

X

v Y

Z

u v

u v

v

v

α

α

α

⎡ ⎤
∂ ⎢ ⎥≡ = ⎢ ⎥∂

⎢ ⎥−⎣ ⎦

x

x , 

 

(A21) ( )T
u u

u

∂
≡ =
∂

x
x R θ x , ( )T

v v

v

∂
≡ =
∂

x
x R θ x . 

 
Setting 

(A22) [ ]
T

k

k
θ

∂
× =

∂

R
ω R , 

1 2 3
[ ]=Ω ω ω ω , 

 

we have [ ]
T

T

k

k
θ

∂
= − ×

∂

R
R ω  and for any vector q  

 

(A23) 
1 1 1

( )T T T T
R q R R R

q q q
θ θ θ θ

⎡ ⎤∂ ∂ ∂ ∂
= =⎢ ⎥

∂ ∂ ∂ ∂⎣ ⎦
 

 
1 2 3

[ ] [ ] [ ]
T T T

R ω q R ω q R ω q⎡ ⎤= − × × × =⎣ ⎦  

 [ ] [ ]1 2 3 1 2 3
[ ] [ ] [ ] [ ] [ ]

T T T
= × × × = × = ×R q ω q ω q ω R q ω ω ω R q Ω. 

Thus 

(A24) 
[ ( )] [ ( )] ( )

T T T
T

p

⎡ ⎤∂ ∂ + ∂ + ∂ ∂
≡ = = =⎢ ⎥
∂ ∂ ∂ ∂ ∂⎣ ⎦

x R x d R x d R d x
x R

p p θ d α
 

 [( ) ] [( ) ]
T T T T⎡ ⎤ ⎡ ⎤= + × = + ×⎣ ⎦⎣ ⎦R x d Ω R R D R x d Ω I D , 

where 

(A25) 

cos sin 0 0

0 sin sin 0

0 0 cos
X Y Z

u v

u v

v

α α α

⎡ ⎤
⎡ ⎤∂ ∂ ∂ ∂ ⎢ ⎥≡ = =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦

x x x x
D

α
. 

 
For the specific values of 

1 2 3
[ ]=Ω ω ω ω  we find the partials of 
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3 3 2 2 1 1
( ) ( ) ( )θ θ θ=R R R R  using the well-known differentiation relations 

( ) [ ] ( ) ( )[ ]
k k k k k k k k

k

θ θ θ
θ

∂
= − × = − ×

∂
R i R R i , 1,2,3k = , where 

k
i  are the columns of 

the 3 3×  identity matrix 
3 1 2 3

[ ]=I i i i , as well as the property [( ) ] [ ]
T

× = ×Qy Q y Q  

for any orthogonal Q. Thus  
 

(A26) 
3 3 2 2 1 1 1 3 3 2 2 1 2 2 3 3

1

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )θ θ θ θ θ θ θ
θ

∂
= − × = − × − − =

∂

R
R R i R R R i R R R  

 
3 3 2 2 1

[{ ( ) ( ) } ]θ θ= − ×R R i R , 
 

(A27) 
3 3 2 2 2 1 1

2

( )[ ] ( ) ( )
R

R i R Rθ θ θ
θ

∂
= − × =

∂
 

 
3 3 2 3 3 3 3 2 2 1 1 3 3 2 3 3
( )[ ] ( ) ( ) ( ) ( ) [{ ( ) } ] ( )R i R R R R R i R Rθ θ θ θ θ θ θ= − × − = − × − , 

 

(A28) 
3 3 3 2 2 1 1 3

2

[ ] ( ) ( ) ( ) [ ]θ θ θ
θ

∂
= − × = − ×

∂

R
i R R R i R , 

 

while from [ ]
T

k

k
θ

∂
× =

∂

R
ω R  it follows that 

 
(A29) 

1 3 3 2 2 1
( ) ( )θ θ= −ω R R i , 

2 3 3 2
( )θ= −ω R i , 

3 3
= −ω i , 

 

(A30) 

3 2 3

3 2 3

2

cos cos sin 0

( ) sin cos cos 0

sin 0 1

θ θ θ

θ θ θ

θ

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

Ω θ . 

 

Orthogonal projection of a point on the surface of the ellipsoid. 
 
In order to project a given point on the surface of an ellipsoid with known parame-

ters, we can always convert the point coordinates to the ellipsoid aligned reference 

system, where it satisfies 1
T

=x Λx  (Λ  diagonal with 2

11
1/

X
αΛ = , 2

22
1/

Y
αΛ = , 

2

33
1/ )

Z
αΛ = ). If ′x  are the converted given point coordinates in the same reference 

system we seek a point x  satisfying ( ) 1 0Tf = − =x x Λx , such that ( )ρ′− =x x g x , 

where 2gradf= =g Λx . Therefore ( ) 2ρ ρ′− = =x x g x Λx , which yields 
1( 2 )ρ

−

′= −x I Λ x . Replacing this in ( )f x  we obtain the following nonlinear equa-

tion in ρ  
 

(A31) 1 1( 2 ) ( 2 ) 1 0T
ρ ρ

− −

′ ′− − − =x I Λ Λ I Λ x . 
 
Since 2ρ−I Λ  is diagonal with elements ( 2 ) 1 2

ii ii
ρ ρ− = − ΛI Λ , the inverse will 

have diagonal elements 1/(1 2 )
ii

ρ− Λ  and 1 1
[( 2 ) ( 2 ) ]

ii
I Λ Λ I Λρ ρ

− −

− − =  
2

/ (1 2 )
ii ii

ρ= Λ − Λ . Thus the explicit form of the above equation becomes 
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3

2

2

1

1 0
(1 2 )

ii

i

i ii

x

ρ
=

Λ
′ − =

− Λ
∑  or with [ ]

T

i i i i
x X Y Z′ ′ ′ ′=  

 

(A32) 

2 2 2

2 2 2
1 0

2 2 2

X Y Z

X Y Z

X Y Zα α α

α ρ α ρ α ρ

′ ′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
This is a nonlinear equation (equivalent to a 6th order polynomial in ρ ) that can be 

solved by any of the relevant standard methods of numerical analysis. Once ρ  is 

determined the desired projection is computed from 1( 2 )ρ
−

′= −x I Λ x , explicitly 
 

(A33) 

2

2

2

2

2

2

2

2

2

X

X

Y

Y

Z

Z

X

X

Y Y

Z

Z

α

α ρ

α

α ρ

α

α ρ

⎡ ⎤
′⎢ ⎥

−⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ ′= = ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥′
⎢ ⎥−⎣ ⎦

x . 

 
Finally the distance || ||r ′= −x x  can be computed by combining 2ρ′− =x x Λx  

with 1( 2 )ρ
−

′= −x I Λ x  to get 1
2 ( 2 )ρ ρ

−

′ ′− = −x x Λ I Λ x , so that 
2 2 1 2 1( ) ( ) 4 ( 2 ) ( 2 )T
r ρ ρ ρ

− −

′ ′ ′ ′= − − = − −x x x x x I Λ Λ I Λ x , or explicitly 
 

(A34) 

2 2 2

2 2 2
2

2 2 2
X Y Z

X Y Z
r ρ

α ρ α ρ α ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

 
The above algorithm is adapted from Spain et al. (1960), Ch. V-40, p. 43 and was 

reproduced by Hart (2006) and Eberly (2013). More complicated approaches have 

been proposed by Bektas (2014a, 2014b). For an iterative approach see Hu & 

Wallner (2005). 

 

 

Appendix B: Adjustment of observation equations with constraints  
containing additional parameters 

 
Consider the linear model = +b Ax e  with constraints + + =Cx Dy d 0 , which 

contain additional parameters y . To find the least squares solution, 

( ) ( ) minT T
= − − =e Pe b Ax P b Ax , under these constraints we form the Lagrangean 

 

(B1) ( ) ( ) 2 ( )T T
Φ = − − + + +b Ax P b Ax k Cx Dy d , 

 
and we set its derivatives with respect to the unknowns and the Lagrange multipli-

ers k  equal to zero 
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(B2) ˆ2( ) 2T T∂Φ
= − − + =

∂
b Ax PA k C 0

x
, 

 

(B3) 2
T∂Φ

= =
∂

k D 0
y

, 

 

(B4) ˆ ˆ2( )T
∂Φ

= + + =
∂

Cx Dy d 0
k

. 

 
The solution is provided by the linear system 
 

(B5) ˆ

T T T
− =A PAx C k A Pb , 

 

(B6) T
=D k 0 , 

 
(B7) ˆ ˆ+ + =Cx Dy d 0  
 
Setting T

=� A PA  and T
=u A Pb  we may solve (B5) for 1 1

ˆ

T− −

= +x � u � C k , re-

place this in (B7) and solve for 
 

(B8) 1 1 1 1 1ˆ( ) ( ) ( )T T− − − − −

= − + −k C� C Dy d C� C C� u , 
 
which replaced in (B6) gives 
 

(B9) 1 1 1 1 1ˆ( ) ( ) ( )T T T T− − − − −

+ − =D C� C Dy d D C� C C� u 0 . 
 
This can be solved for  
 

(B10) 
1

1 1 1 1 1ˆ ( ) ( ) ( )T T T T
−

− − − − −⎡ ⎤= − +⎣ ⎦y D C� C D D C� C C� u d . 

 

Replacing  from (B8) into 1 1
ˆ

T− −

= +x � u � C k  gives 
 

(B11) 1 1 1 1 1 1 1 1ˆ ˆ( ) ( ) ( )T T T T− − − − − − − −

= − + −x � u � C C� C C� u d � C C� C Dy , 
 
or utilizing the value of ŷ  from (B10) 
 

(B12) 1 1 1 1 1ˆ ( ) ( )T T− − − − −

= − + +x � u � C C� C C� u d  

 
1

1 1 1 1 1 1 1 1( ) ( ) ( ) ( )T T T T T T
−

− − − − − − − −⎡ ⎤+ +⎣ ⎦� C C� C D D C� C D D C� C C� u d . 

 
We need only (B10) and (B11) for a sequential solution to the least squares prob-

lem. 
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