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Preface: This paper is written in the frame of the seminar Advanced Topics in Discrete 

Mathematics held during 2004 at ETH Zurich. The layout as well as the content is mostly 

based on Develin and Sturmfels (2004) and on Sturmfels (2002) and Speyer and Sturmfels 

(2004). After an introduction to the tropical semiring and its operations, the convexity no-

tion will be redefined in this tropical setting. Following that, tropical polytopes will be in-

troduced together with some of their properties. Tropical cell complexes will be discussed 

in the sequel. The paper will conclude with an application area of tropical mathematics in 

control of discrete event systems. Throughout the paper, the emphasis is on the geometrical 

intuition. Proofs will be given only in cases of special interest. 
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1. Introduction 

The tropical semiring (R, ⊕, ⊙) is the set of real numbers with the operations of 

tropical addition, which takes the minimum of two numbers and tropical multipli-

cation, which takes their sum. In short: 

a ⊕ b : = min(a, b) and a ⊙ b : = a + b. 

The above generalize in Rn as pointwise minimum and (scalar) pointwise addition 

operations, with tropical addition 

(x1, . . . , xn) ⊕ (y1, . . . , yn ) = (x1 ⊕ y1, . . . , xn ⊕ yn ), 

and tropical multiplication with a scalar c 

c ⊙ (x1, x2, . . . , xn ) = (c ⊙ x1, c ⊙ x2, . . . , c ⊙ xn ). 

Sometimes instead of the minimum, the maximum is considered in the definition of 

tropical addition. A set S of Rn is called tropically convex if 

∀a, b ∈ R, ∀x, y ∈ S :  a ⊙ x ⊕ b ⊙ y  ∈ S. 

The tropical convex hull of a given subset V ⊂ Rn is the smallest tropically convex 
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subset of Rn which contains V. Any tropically convex subset S of Rn is closed un-

der the tropical scalar multiplication. That is, if a point x ∈ S, then also x + λ (1, . . . 

, 1) ∈ S, for all λ ∈ R. This property gives rise to the idea of tropical projective 

space TPn−1 which is defined TRn−1 as 

TPn−1 = Rn / (1, . . . , 1) R. 

In other words, we present any tropically convex set in Rn by its projection on TP 

n−1. We can think about this projection as resulting from a translation along the di-

agonal (1, 1, . . . , 1) ∈ Rn . In particular, we can normalize a point by translation 

until its first coordinate becomes zero. 

 

 

Figure 1. Tropical convex set and tropical polytope 

 

For example, the point (x1, x2, x3, x4) ∈ R4 will be represented in TP3 by the coordi-

nates (0, x2  – x1, x3  – x1,  x4 – x1), i.e. by (x2 – x1, x3 – x1, x4 – x1). Also note, that 

while the translation must be performed along the diagonal, the final projection can 

be onto any hyperplane that properly intersects the diagonal. The former approach 

facilitates computation, while the latter helps visualization. 
 
A tropical polytope is the tropical convex hull of a finite subset V (i.e. a finite set 

of points) in TP n−1. 

 

 

2. Tropically convex sets 

Let’s begin with two pictures of convex sets in the tropical plane TP2. A point  

(x1, x2, x3) ∈ TP2 is represented by drawing the differences (x2 – x1, x3 – x1). For 

convex sets, this is all the information needed, as a consequence of the fact that 

tropically convex sets are closed under tropical scalar multiplication. The left part 

of figure 1 is not a tropical polytope, because it is not the tropical convex hull of 

finitely many points. However, it is a tropically convex set. On the other hand, the 

right part of figure 1 is a tropical polytope. It is the tropical convex hull of the three 

points, whose coordinates are also shown. The thick black lines in the left subfig-
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ure represent tropical line segments. To get a better intuition for these geometrical 

objects, we first have to see what a tropical line and a tropical line segment really 

are. We begin with some definitions. 

Definition 2.1. A tropical polynomial f (x) is the minimum of a finite set of linear 

functions with N-coefficients. 

For example, 

f (x, y) = 5 · x2y ⊕ xy ⊕ 0 · xy3 

actually means 

f (x, y) = min {5 + 2x + y, x + y, 0 + x + 3y} 

In this tropical setting, the additive unit is +∞. That is, x ⊕ (+∞) = min{x, +∞} = x. 

Therefore, the tropical line will be defined as the tropical variety of a linear poly-

nomial, that is, the set of points satisfying the following equation: 

 f (x, y) = ax ⊕ by ⊕  c = +∞ (2.1) 

where a, b, c are fixed real numbers. Here, we have to trust that in ordinary arith-

metic, this amounts to finding those points for which the minimum is attained  

min {x + a, y + b, c} 

least twice. The tropical lines, due to the way they are constructed, consist of regu-

lar line segments, and rays whose slopes are zero-one vectors. This generalizes to 

higher dimensions, where instead of tropical lines we have tropical hyperplanes. 

Definition 2.1 refers to Rn space. 

Now we are going to give a more precise description of how tropical line segments 

really look like. Conceptually, one has to take two points in Rn and construct their 

convex hull, i.e., for two points x, y ∈ Rn the tropical line segment between x and y 

is the set {a ⊙ x ⊕  b ⊙ y | a, b ∈ R}. Then, project it down to TPn−1 and look at the 

result. Taking a closer look at the conceptual procedure just described, we arrive at 

the following result: 

Proposition 2.2. The tropical line segment between two points x and y in TPn−1 is 

the concatenation of at most n − 1 ordinary line segments. The slope of each line 

segment is a zero-one vector. 

Proof. After relabeling the coordinates of x = (x1, . . . , xn ) and y = (y1, . . . , yn ) we 

may assume 

 y1 – x1 ≤ y2 – x2 ≤ · · · ≤ yn – xn  (2.2) 

The following points lie in the given order on the tropical segment between x and 

y: 
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x = (y1 – x1) ⊙ x ⊕ y = (y1, y1 –x1 + x2, y1 –x1 + x3, . . . , y1 – x1 + xn−1, y1 –x1 + xn ) 

(y2 – x2) ⊙ x ⊕ y = (y1, y2, y2 – x2 + x3, . . . , y2 – x2 + xn−1, y2 – x2 + xn ) 

· · ·                  · · ·       · · · 

(yn−1 – xn−1) ⊙ x ⊕ y = (y1, y2, y3, . . . , yn−1, yn−1 – xn−1 + xn ) 

y = (yn – xn ) ⊙ x ⊕ y = (y1, y2, y3, . . . , yn−1, yn ). 

Between any two consecutive points, the tropical line segment agrees with the or-

dinary line segment, which has slope (0, 0, . . . , 0, 1, 1, . . . , 1). Hence the tropical 

line segment between x and y is the concatenation of at most n − 1 ordinary line 

segments, one for each strict inequality in (2.2). 

This description of tropical segments shows an important feature of tropical poly-

topes: their edges use a limited set of directions. A tropical polytope in TPn−1 is 

nothing more than the tropical convex hull of a finite number of points. Conceptu-

ally, the construction of the tropical convex hull of a set of points in TPn−1 can be 

based on the following proposition.  

Let v1, . . . , vr ∈ V and a1, . . . , ar ∈ R. Then the set of all tropically linear combina-

tions 

 a1 ⊙ v1 ⊕  a2 ⊙ v2 ⊕ . . . ⊕  ar ⊙ vr (2.3) 

satisfy the following proposition. 

 

 

Figure 2. Three tropical polytopes. First two in TP2, the last in TP3 

 

Proposition 2.3. The smallest tropically convex subset of TPn−1 which contains a 

given set V coincides with the set of all tropical linear combinations (2.3). We de-

note this set by tconv(V). 

Proof. By definition, the smallest tropically convex subset of TPn−1
 which contains 

a given set V, is its tropical convex hull. To show that it coincides with the set of 
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all tropically linear combinations (2.3), we have to show two things: First, that the 

set of all linear combinations are contained in the convex hull and second, that the 

convex hull is contained in the set of all linear combinations. For the first, we argue 

by induction on the number of points r. Let x = ⊕r
i=1 ai ⊙ vi be the point in (2.3). If 

r ≤ 2, then x is clearly in the tropical convex hull of V (because the tropical convex 

hull is also a tropically convex set, therefore it has to contain all the points given by 

a ⊙ x ⊕ b ⊙ y for all x, y ∈ V and a, b ∈ R - see definition on the first page). Now, 

if r > 2, we write x = a1 ⊙ v1 ⊕ (⊕r
i=2 ai ⊙ vi ). The parenthesized vector lies in the 

tropical convex hull, by induction on r, and hence so does x. For the converse, con-

sider any two tropical linear combinations  

x =⊕r
i=2 ci ⊙ vi  and y = ⊕r

i=1 di ⊙ vi . By the distributive law, a ⊙ x ⊕ b ⊙ y is also 

a tropical linear combination of v1, v2, . . . , vr ∈ V . Hence the set of all tropical 

linear combinations is tropically convex, so it contains the tropical convex hull of 

V. (Here, we make use of the fact that the tropical convex hull is the smallest tropi-

cally convex set that contains a given set of points, therefore it is contained in 

every other convex set containing them). 

If V is a finite subset of TPn−1 then tconv(V) is a tropical polytope. Figure 2 shows 

some examples of that. The two first are tropical convex hulls of three points each 

and the last one is the union of three squares. Carathéodory’s theorem also holds in 

the tropical case. 

Theorem 2.4. (Tropical Carathéodory’s theorem). If x is in the tropical convex hull 

of a set of r points vi in TPn−1
, then x is in the tropical convex hull of at most n of 

them. 

Generalizing the notion of the tropical line, a tropical hyperplane defined by a 

tropical linear form a1 ⊙ x1 ⊕ a2 ⊙ x2 ⊕ · · · ⊕  an ⊙ xn consists of all points  

x = (x1, x2, . . . , xn ) in TPn−1 such that the following holds (in ordinary arithmetic) 

 ai + xi  = aj  + xj  = min{ak + xk  : k = 1, . . . , n} (2.4) 

for some indices i ≠ j. That is, it consists of those points at which the minimum in 

(2.4) is attained more than once (at least twice). As might have been expected, the 

following proposition holds. 

Proposition 2.5. Tropical hyperplanes in TPn−1 are tropically convex. 

Proof. Let H be a hyperplane defined by (2.4). Suppose that two points x and y lie 

in H and consider any tropical linear combination z = c ⊙ x ⊕ d ⊙ y. To show that 

H is tropically convex, we have to show that z ∈ H. For this to hold, if we plug the 

coordinates of z = (z1, z2, . . . , zn ) into the linear form defining H, the correspond-

ing minimum must be attained at least twice. Let i be the index which minimizes  

ai +zi .  
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We need to show that this minimum is attained at least twice. By definition, zi is 

equal to either c + xi or d + yi . After permuting the coordinates of x and y, we may 

assume without loss of generality that zi = c + xi. Remember that i is a fixed index 

that minimizes the expression ak + zk over k = 1, . . . , n. By this construction, we 

have also zk ≤ c + xk for all k = 1, . . . , n. Hence, ai + zi ≤ ak + zk ≤ ak + c + xk for all 

k = 1, . . . , n. From this it follows that ai + xi ≤ ak + xk for all k so that ai + xi 

achieves the minimum of {a1 + x1, a2 + x2, . . . , an + xn }. But since x ∈ H , there 

exists a second index j ≠ i for which this minimum is attained twice: aj + xj = ai + 

xi. But now aj + zj ≤ aj + c + xj = c + ai + xi = ai + zi . Since ai + zi is the minimum 

of all aj + zj , the two must be equal and this minimum is attained at least twice, as 

desired. 

Proposistion 2.5 implies that if V is a subset of TPn−1 which happens to lie in a 

tropical hyperplane H, then its tropical convex hull tconv(V) will lie in H as well. 

Yet another relevant object is the tropical plane which can be expressed as the in-

tersection of tropical hyperplanes. But not any arbitrary intersection of any set of 

hyperplanes qualifies as tropical plane. This is a fine point of tropical geometry. 

 

 

3. Tropical polytopes and cell complexes 

Throughout this section we fix a finite subset V = (v1, v2, . . . , vr ) of r points in the 

tropical projective space TPn−1. Here, vi = (vi1, vi2, . . . , vin ). We will study the 

tropical polytope P = tconv(V ). Our goal is to describe a natural cell decomposi-

tion of TPn−1 induced by the fixed finite subset V. 

Let x be any point in TPn−1. The type of x relative to V is the ordered n-tuple (S1, 

S2, . . . , Sn ) of subsets Sj ⊆ {1, 2, . . . , r} which is defined as follows: An index i is 

in Sj if 

 vij  − xj = min{vi1 –x1, vi2 – x2, . . . , vin – xn} (3.1) 

Equivalently, if we set λi = min {λ ∈ R  : λ ⊙ vi ⊕  x = x} then Sj is the set of all 

indices i such that λi ⊙ vi and x have the same j-th coordinate. We say that a n-

tuple of index sets S = (S1, S2, . . . , Sn ) is a type if it arises in this manner. Note 

that from the definition of the type it follows that every i will eventually be in-

cluded in some Sj. 

Remark 3.1. See the notes in the Appendix for an example plus a proof of the 

equivalence of the two type definitions and some more intuition for the type. 

We now state and prove the tropical Farkas Lemma.  

Proposition 3.2 (Tropical Farkas Lemma). For all x ∈ TPn−1, exactly one of the 

following is true. 
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(i) the point x is in the tropical polytope P = tconv(V), or 

(ii) there exists a tropical hyperplane which separates x from P. 

We have to clarify what the aforementioned separation statement really means. It 

means the following: if the hyperplane is given by (2.4) and ak + xk = min {a1 + x1, 

. . . , an + xn } then ak + yk > min{a1 + y1, . . . , an + yn} for all y ∈ P . 

Proof. Consider any point x ∈ TPn−1, with type type(x) = (S1, . . . , Sn , and let λi = 

min{λ ∈ R : λ ⊙ vi ⊕ x = x} as before. We define 

 πV (x) = λ1 ⊙ v1 ⊕ λ2 ⊙ v2 ⊕ · · · ⊕ λr ⊙ vr . (3.2) 

There are two cases: either πV (x) = x or πV (x) ≠ x. The first case implies (i), be-

cause then (3.2) expresses x as a tropical linear combination of the points in V, 

hence x lies in tconv(V ) = P. Since (i) and (ii) clearly cannot occur at the same 

time, it suffices to prove that the second case implies (ii). 

Suppose that πV (x) ≠ x. Then following lemma holds: 

Lemma 3.3. There exists some index k ∈ {1, . . . , n} such that vik + λi − xk > 0  for 

every  i = 1, . . . , r. 

Proof. We begin by expanding the expression πV (x) ≠ x. It denotes the following: 

 

1 11 2 21 r r1 1

1 12 2 22 r r2 2

1 1n 2 2n r rn n

min( v , v ,....., v ) x

min( v , v ,....., v ) x

min( v , v ,....., v ) x

λ + λ + λ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥λ + λ + λ +⎢ ⎥ ⎢ ⎥≠
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

λ + λ + λ +⎣ ⎦ ⎣ ⎦

� �
  (3.3) 

We also know (see remark 3.1) that λi + vij ≥ xj for all i, j. This fact together with 

(3.3) means that the equality in (3.3) cannot be achieved because for some (at least 

one) j, say j = k equality cannot be achieved. Hence, there exists k ∈ {1, . . . , n}  

such that  λi + vik > xk for all i ∈ {1, . . . , r}. This also means that Sk will be empty 

for the same k. 

Now, we choose an ε > 0 such that ε < vik + λi – xk for all i = 1, . . . , r. We choose 

the separating hyperplane (2.4) as follows: 

 ak  := –xk – ε   and   aj  := –xj      for  j ∈ {1, . . . , n}\k. (3.4) 

This choice clearly satisfies ak + xk  = min{a1 + x1, . . . , an + xn }. Now, consider 

any point y = ⊕ 
r
i=1 ci ⊙ vi  in tconv(V ). In more detail, this is equal to the follow-

ing 
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1 11 m m1 r r1

1 k m mk r r1

1 1n m mn r rn

min(c v ,...,c v ,...,c v )

y min(c v ,...,c v ,...,c v )

min(c v ,...,c v ,...,c v )

+ + +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

…

…

 

Pick any m such that yk = cm +vmk . By definition of the λi , we have xk ≤ λm +umk 

for all k and there exists some j with xj = λm + vm j. All the above, put together, im-

ply 

ak + yk  = ak + cm + vmk  = cm + vmk – xk − ε > cm − λm 

                  = cm + vmj − xj  ≥ yj  – xj  = aj  + yj  ≥ min(a1 + y1, . . . , an + yn 

 

 

Figure 3. Geometrical construction of the cell decomposition CV 

Therefore, the hyperplane defined by (2.4) separates x from P as desired. 

We will now sketch the idea of the tropical cell complex. Let S = (S1, . . . , Sn ) as 

before and consider the set of all points whose type contain S 

XS := {x ∈ TPn−1  : S ⊆ type(x)}. 

Lemma 3.4. The set XS is a closed convex polyhedron (in the usual sense). 

We are now prepared to state the following important theorem (no more proofs). 

Theorem 3.5. The collection of convex polyhedra XS, where S ranges over all pos-

sible types, defines a cell decomposition CV of  TPn−1. The tropical polytope 



An Introduction to Tropical Convexity 331 

 

P = tconv(V) equals the union of all bounded cells XS  in this decomposition. 

This is clarified by figure 3. There is also a nice geometrical construction of this 

decomposition, briefly given by the following proposition. 

Proposition 3.6. The cell decomposition CV is the common refinement of the r fans 

−F + vi . 

F in the proposition above is the fan defined by the tropical hyperplane (2.4). Using 

the idea of the cell decomposition, the following proposition can be proven. 

Proposition 3.7. If  P and Q are tropical polytopes in TPn−1 then P ∩ Q is also a 

tropical polytope. 

This concludes the section. 

 

Figure 4. A simple manufacturing system 

 

 

4. Max plus algebra and control 

In this section, we’ll try to briefly present the connection between tropical mathe-

matics, also known as max-plus or min-plus algebra, with control engineering. 

Some of the references on the subject include, but are not limited to, Cohen et al. 

(1999) and De Schutter and van den Boom (2000). More specifically, the max-plus 

algebra framework can be used to model discrete-event systems. The main advan-

tage of this modelling technique is that the normally viewed nonlinear dynamics of 

the system become linear in the tropical setting. For example, consider the produc-

tion system of figure (4). 

This manufacturing system consists of three processing units: P1, P2 and P3 and 

works in batches (one batch for each finished product). Raw material is fed to P1 

and P2, processed and sent to P3 where assembly takes place. Note that each input 

batch of raw material is split into two parts: one part of the batch goes to P1 and the 

other part goes to P2. The processing times for P1, P2 and P3 are respectively d1 = 

11, d2 = 12 and d3 = 7 time units. We assume that it takes t1 = 2 time units for the 

raw material to get from the input source to P1, and t3 =1 time unit for a finished 
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product of P1 to get to P3. The other transportation times (t2, t4 and t5) and the set-

up times are assumed to be negligible. At the input of the system and between the 

processing units there are buffers with a capacity that is large enough to ensure that 

no buffer overflow will occur. A processing unit can only start working on a new 

product if it has finished processing the previous product. We assume that each 

processing unit starts working as soon as all parts are available. 

Now we want to derive a model for this system, related to tropical mathematics. It 

has been shown that discrete event systems with no concurrency and only synchro-

nization can be modelled by a max-plus algebraic model of the following form: 

x(k + 1) = A ⊙ x(k) ⊕  B ⊙ u(k) 
 (4.1) 

y(k)  = C ⊙ x(k) 

For a manufacturing system, u(k) would typically represent the time instant at 

which the raw material is fed to the system for the (k + 1)th time, x(k) the time in-

stants at which the machines start processing the kth batch of intermediate products, 

and y(k) the time instants at which the kth batch of finished products leaves the sys-

tem. A discrete-event system that can be modelled by (4.1) is sometimes called a 

max-plus-linear time-invariant discrete-event system, or MPL system for short. 

Now we derive the max-plus-linear state space model of the production system of 

figure (4). First we determine the time instant at which processing unit P1 starts 

working for the (k + 1)th time. If we feed raw material to the system for the (k + 1)th 

time, then this raw material is available at the input of processing unit P1 at time t = 

u(k) + 2. However, P1 can only start working on the new batch of raw material as 

soon as it has finished processing the current, i.e. the kth batch. Since the process-

ing time on P1 is d1 = 11 time units, the kth intermediate product will leave P1 at 

time t = x1(k) + 11. Since P1 starts working on a batch of raw material as soon as 

the raw material is available and the current batch has left the processing unit, this 

implies that we have 

  x1(k + 1) = max(x1(k) + 11, u(k) + 2). (4.2) 

Using a similar reasoning we find the following expressions for the time instants at 

which P2 and P3 start working for the (k + 1)st time and for the time instant at which 

the kth finished product leaves the system: 

x2(k+1)  = max(x2(k) + 12, u(k) + 0) 

x3(k+1)  = max(x1(k+1) + 11+ 1, x2(k+1) + 12 + 0,  x3(k) + 7) (4.3) 

   = max(x1(k) + 23, x2(k) + 24, x3(k) + 7), u(k) + 14) 

     y(k)   = x3(k) + 7 + 0.  
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By using −∞ as the zero element of tropical addition (note that we use a max con-

vention in this example), we can rewrite the preceding equations in a matrix format 

resembling linear time invariant systems. 

11

x(k 1) 12

23 2

2

x(k) 0 u(k

14 7

)

4

−∞ −∞⎡ ⎤ ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥+ = −∞ −∞⎢ ⎥
⎢ ⎥⎣ ⎦

� � �  

 (4.4) 

[ ] x(ky(k) 7 )= −∞ −∞ �  

These models are quite appealing, because they have a nice”linear” structure which 

is amenable to computations. Starting from these models, various control schemes 

can be applied, including model predictive control (De Schutter and van den Boom, 

2000). 
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Appendix 

A. Clarifications concerning the ‘type’ definition. 

i: refers to the n-vectors vi of TPn−1, i = 1, ….. r 

j: refers to the jth coordinate of x or vi, j = 1, ….. r 

Index set Sj � refers to some coordinate, e.g. 4th, 6th. 

Example: let n=r=3 and   

1 2 3

0 0 0 0

v 0 v 2 v 1 x 1

2 0 2 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

              (i=1)          (i=2)          (i=3) 

 

a)  We take the differences, vi – x, and b) ask where is the minimum at?  what j? 

      i.e., 

1 2 3

0 0 j* 1 0

v x 1 j* 2, v x 1 , v x 0

3 1 1 j* 3

← =⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − ← = − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ← =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

c)  For each coordinate j=1,…n, we ask the  following questions, 

S1:  j=1. For which i’s does j equal j*? 

                   For i=2 only. Therefore S1 = {2} 

S2:  j=2. For which i does j* =2? 

                   For i=1 only. Hence S2 = {1} 

S3:  j=3. In similar manner, S3= {3} 

In total we have S = {{2}, {1}, {3)}. 

B. Equivalence of the second definition 

To   every vector vi from the set V, and with respect to an arbitrary fixed point x, 

we attach a scalar λi, defined as follows: 

λi :=  min { λ ϵ R :  λ�  vi ⊕ x =  x } 

Let’s elaborate on it: 

i1

i i

in

1
v

1
v , so " v x x"

v
1

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥λ = λ + λ ⊕ =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

� � �
�

 means that elementwise, 
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coordinatewise, for all coordinates, the coordinate values of x are less or equal 

those of λ�  vi. To put it short: 

∀j = 1…n: min {xj, λ+vij} = xj ⇔ xj ≤ λ + vij  ⇔ λ ≥ xi – vij, ∀ i = 1…n 

⇔ λ ≥ max {xj – vij}. 

 j 

Going back to the definition of λi, using (1) we get: 
 

λi = min {λ ϵ R :  λ ≥ max {xj – vij} }, i.e.,  λi = max {xj – vij} = - min {vij – xj}. 
       j          j             j          
 

To get a pictorial idea of what this λi is, consider the following: 

 

  
λi is the maximum difference {xj – vij} . Now, by performing the addition λ�  vi, 

we lift all coordinates of vector vi by the amount λi (the minimum such amount), 

such that all coordinates of vi will lie above the respective ones of x. The coordi-

nates of x and vi for which the maximum difference λi was observed will be equal 

in the λ�  vi and x vectors, and the i will be included in the corresponding Sj’s (S3 

and S12 above). 

                                (2) 

In math i ϵ Sj if  “ x,  λi�  vi  have the same jth  coordinate”  ⇔ xj = λi�  vi |j  ⇔   
 

xj = max {xj – vij} + vij ⇔ 

         j 

⇔  xj = max {xk – vik} + vij = –min {vik – xk} + vij = ⇔ vij – xj = min {vik – xk}  

  k               k                   k 

which is exactly the condition for i to be included in Sj, in the initial definition of 

type (x) with respect to v. 


