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Abstract: A new method to convert Cartesian to geodetic coordinates is presented. For the 

geodetic longitude the computation is exact but for the other coordinates the computation is 

based on a repeated application of the direct transformation. Starting with approximate val-

ues of geodetic height and latitude, we compute approximate Cartesian coordinates. Using 

these values, we correct the geodetic height applying a formula from plane geometry. 

Again, we compute the Cartesian coordinates and using these values we correct the geo-

detic latitude by a simple spherical formula. Then, comparing the resulting Cartesian coor-

dinates with the given coordinates we repeat the same procedure until convergence. The 

derivations of the used formulas, as well as the description of the algorithm are presented in 

detail. Finally, the new approximate iterative method is validated with numerical experi-

ments. 
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1. Introduction 

One of the most interesting and useful procedures in geodesy is that of converting 

Cartesian (x, y, z) to geodetic coordinates (h, φ, λ). While the direct transformation 

from geodetic to Cartesian coordinates is straightforward, the inverse transforma-

tion is a difficult task, with a long history and a plethora of different solutions. In 

the last sixty years, about seventy papers describing methods of solving this prob-

lem, especially when solving for geodetic height and latitude, have been proposed 

by many researchers, as they are reported in a very comprehensive paper by Feath-

erstone and Claessens (2008). Also, comparisons among some of the existing 

methods have been conducted by Gerdan and Deakin (1999), Seemkooei (2002) 

and Fok and Iz (2003). The performance evaluation of the algorithms focuses on 

the aspects of accuracy, stability and computational speed. Nevertheless, the execu-

tion time does no longer play an essential role today with the availability of high 

speed computers. 
 
The methods of solving this problem can be divided into two general categories: (i) 

exact methods, e.g., Zhang et al. (2005), Vermeille (2011) and Zeng (2013), and 
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(ii) approximate methods, e.g., Heiskanen and Moritz (1967), Lin and Wang 

(1995), Fotiou (1998), Fukushima (1999), Jones (2002), Pollard (2002), Shu and Li 

(2010), Turner (2009) and You (2000). The exact methods are usually based on the 

solution of an appropriate quartic equation, which is derived by essential calculus. 

It is well-known that a quartic equation has an exact analytical solution which, ex-

cept at the singularities of the formulas, includes several intermediate steps with 

time consuming mathematical operations, such as cubic roots. Thus, the exact 

methods, when implemented in code and executed in a computer with limited pre-

cision, are less accurate and slower than the approximate methods, see Seemkooei 

(2002). On the other hand, the approximate methods can be broken into two 

classes: (a) non-iterative methods (essentially involving a truncated series expan-

sion), e.g., Fotiou (1998), Turner (2009) and You (2000), and (b) iterative methods 

e.g., Heiskanen and Moritz (1967), Lin and Wang (1995), Fukushima (1999), Jones 

(2002), Pollard (2002) and Shu and Li (2010). In the first class, the solution is ob-

tained after a particular number of computations but the results are given at a level 

of accuracy which is the inherent approximation of the method. In contrast, in the 

second class the level of accuracy is user defined but the execution time is more 

difficult to predict. Also, they require many numerical tests to confirm their con-

vergence, after a finite number of iterations, to the solution. 
 
In this paper, we present an approximate iterative method to convert Cartesian to 

geodetic coordinates. The procedure is based on repeated application of the direct 

transformation and has a clear geometrical interpretation. In each iteration, we ap-

ply a height correction followed by a latitude correction. In Sect. 2, the basic tools 

used in this method are presented. Especially, we derive the formulas for height 

and latitude corrections. In Sect. 3, we describe the steps of the algorithm, in order 

to show the implementation clearly. Finally, in Sect. 4, we test the algorithm using 

numerical experiments. 

 
 

2. Basic equations 

The geodetic coordinates (h, φ, λ) are related to the corresponding Cartesian coor-

dinates (x, y, z) by (Heiskanen and Moritz, 1967) 
 

( ) λcosφcosh�x +=  (1a) 
 

( ) λsinφcosh�y +=  (1b) 
 

( )[ ] φsin1 2
he�z +−=  (1c) 

 
where � is the normal radius of curvature: 
 

φsin1
22

e

a
�

−

= . (2) 
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The result for geodetic longitude λ is immediately obtained from the first two equa-

tions of (1): 
 

⎟
⎠

⎞
⎜
⎝

⎛
=

x

y1-
tanλ  (3) 

 
or from equivalent and more stable formulas, see Vermeille (2011). Denoting with 

22
yxr += , the transformation formulas (1) are written as 

 

( ) φcosh�r +=  (4a) 
 

( )[ ] φsin1 2
he�z +−= . (4b) 

 
Thus, the inverse formulas may be written as 
 

Ν
r

h −=

φcos
 (5a) 

 
( )
( )[ ]he�r

h�z

+−

+

=
−

2

1

1
tanφ . (5b) 

 
Given x, y, z, and hence r, equations (5) may be solved iteratively for h and φ. This 

procedure is described in Heiskanen and Moritz (1967), although many other com-

putational non-iterative methods have been devised e.g., Fotiou (1998) and You 

(2000). The corresponding equations in spherical coordinates (H, Φ), are written as 
 

( ) ΦcosΗar +=  (6a) 
 

( ) ΦsinΗaz +=  (6b) 
 

azrH −+=
22  (7a) 

 

⎟
⎠

⎞
⎜
⎝

⎛
−

=

r

z1
tanΦ . (7b) 

 
In the method presented in this paper, we avoid the use of the inverse formulas (5) 

and we use only the direct formulas (4) together with two correction formulas, 

which are derived below. Furthermore, without loss of generality, we assume  

z ≥  0. 

 

 

2.1. Height correction 

The Euclidean distance between two points ( )
nnnnnn

zrP
,,,

, , n ∈ ℵ , and ( )zrP ,  on 

the rz-plane is given by, see Figure 1 
 

22

,
δδδ

n,nn,nnn
zrs +=  (8) 
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Figure 1. Height correction 

 

where 
 

n,nn,n
rrr −=δ  (9a) 

 

n,nn,n
zzz −=δ . (9b) 

 

Hence, the quantity 
nn

h
,

δ  is computed by 
 

n,nnnnn
sh ωcosδδ

,,

=  (10) 
 
where 
 

n,nn,nn,nnnn,n
A αφ

2

π
αω

,

−−=−= ⎟
⎠

⎞
⎜
⎝

⎛
 (11) 

 
with 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

n,n

n,n

n,n

z

r

δ

δ
tanα

1
. (12) 

 

As we can see in Figure 1, because the points ( )
nnnnnn

zrP
,,,

,  and 

( )
1,1,1,

,
+++ nnnnnn

zrP  are in the same normal to the meridian ellipse, it holds that: 
 

n,nnnnn
hhh δ

,1,
+=

+
 (13a) 

 

nnnn ,1,
φφ =

+
. (13b) 
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2.2. Latitude correction 

Between two points ( )
1,1,1,

,
+++ nnnnnn

zrP  and ( )zrP , , by differentiation of (6) and 

combining the results, we obtain (see Figure 2) 
 

1

1111

1

ΦsinδΦcosδ
δΦ

+

++++

+

+

−

=

n,n

n,nn,nn,nn,n

n,n

Ha

rz
 (14) 

 
where 
 

11
δ

++
−=

n,nn,n
rrr  (15a) 

 

11
δ

++
−=

n,nn,n
zzz . (15b) 

 

 

Figure 2. Latitude correction 

 

Now, we make the approximations 
11

φΦ
++

≈
n,nn,n

 and 
11 ++

≈
n,nn,n

hH  in (14), ob-

taining 
 

1

1111

1

φsinδφcosδ
δφ

+

++++

+

+

−

=

n,n

n,nn,nn,nn,n

n,n

ha

rz
. (16) 

 
Furthermore, we set 
 

1,1,1 +++
=

nnnn
hh  (17a) 

 

1111
δφφφ

++++
+=

n,nn,n,nn
 (17b) 

 

so that we can obtain the point ( )
1,11,11,1

,
++++++ nnnnnn

zrP . 
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3. Algorithm 

Given ( )zrP , , we compute as initial values of h and φ the corresponding spherical 

values H and Φ, from (7). That is, we set n = 0, Hh =
00

, Φ=
00

φ  and we com-

pute the point ( )
0,00,00,0

, zrP  from (4). 
 
From (8), we compute 
 

2

00

2

000,0
δδδ

,,

zrs += . (18) 
 
Now, if this value is below the user defined accuracy ε, we stop the iteration oth-

erwise we apply corrections. 

 

Geodetic height correction 

Using (10), (11), (12), we compute 
 

000,00,0
ωcosδδ

,

sh =  (19) 
 
and we obtain 
 

000,01,0
δ

,

hhh +=  (20a) 
 

0,01,0
φφ = . (20b) 

 

Then we compute the point ( )
1,01,01,0

, zrP  from (4). 

 

Geodetic latitude correction 

Using (15), (16), we compute 
 

1,0

10101010

10

φsinδφcosδ
δφ

ha

rz
,,,,

,

+

−

=  (21) 

 
and we obtain 
 

1,01,1
hh =  (22a) 

 

101011
δφφφ

,,,

+= . (22b) 
 

Again we compute the point ( )
1,11,11,1

, zrP  from (4). 
 
Finally, from (8) we compute 
 

2

11

2

111,1
δδδ

,,

zrs +=  (23) 
 
and we check again if this quantity is smaller than the required accuracy ε. If not 

this procedure is repeated from (19). 
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4. Numerical experiments 

In this section, the performance of the implementation (i.e., accuracy, stability, 

computational speed) of the algorithm presented above, is numerically tested. For 

the data set, the points are obtained by varying geodetic height h from –6·
6

10  m to 

2·
7

10  m by 2600 m steps and geodetic latitude φ from 0ο to 90ο by 1ο steps. This 

combination gives totally 910091 points. We also used, the geometric parameters 

of the reference ellipsoid WGS 84 by NIMA (2000), i.e.,  a = 6378137.0 m  and  
2

e  = 6.69437999014·
3

10
−

. First, we convert the given geodetic (h, φ) to Cartesian 

(r, z) coordinates using the direct transformation (1). Then, the geodetic coordi-

nates (h*, φ*) are obtained from these Cartesian coordinates using the new algo-

rithm. The height error  *σ hhh −=  is the absolute value of the difference be-

tween the given geodetic height and its computed value after t iterations. Similarly, 

for the latitude error  φ*φσφ −= . 
 
For the numerical computations we used a computer with an Intel Core i7 CPU 

860, 2.80GHz processor and 4.0GB RAM. The code was programmed using Mat-

lab 7.10. Totally, seven experiments were performed on the whole data set, varying 

the convergence accuracy ε from 
3

10
−

 m to 
9

10
−

 m by 
1

10
−

 m steps. The statistics 

of the numerical results are presented in Table 1. 

 

Table 1. Statistics of the numerical results computed by the presented algorithm 

ε 

(m) 

hσmax  

(m) 

σφmax  

( " ) 
max t mean t 

time 

(s) 

3
10

−

 9.6·
6

10
−

 6.0·
4

10
−

 8 3.1 109 
4

10
−

 1.5·
7

10
−

 6.0·
5

10
−

 9 3.4 110 
5

10
−

 1.1·
8

10
−

 6.0·
6

10
−

 10 3.8 112 
6

10
−

 1.1·
8

10
−

 6.1·
7

10
−

 11 4.2 114 
7

10
−

 1.1·
8

10
−

 5.9·
8

10
−

 12 4.5 115 
8

10
−

 1.1·
8

10
−

 5.8·
9

10
−

 13 4.9 116 
9

10
−

 7.5·
9

10
−

 5.9·
10

10
−

 50 7.9 128 

 

5. Conclusions 

We have presented an iterative method to convert Cartesian to geodetic coordi-

nates. This method involves few and simple formulas and has a clear geometrical 

interpretation. It consists of a height correction, given by an exact formula, and a 

latitude correction, which involves an inherent approximation, so an iterative ap-

proach is required. 
 
Nevertheless, the method is quite efficient. As it is evident from the presented nu-
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merical tests, it provides very accurate results (of the order of 1 nm in height and 
9

10
−

 arcsec in latitude) for geodetic applications in an extremely wide range of 

heights. In addition, this performance is attained in a very small time (about 0.1 

ms) even using a slow computational environment. 
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