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Abstract: In the latest International Terrestrial Reference System realization (ITRF2014) 

combination model, new types of displacements have been introduced by means of mathe-

matical functions. The addition of these functions has led to the implementation of new 

constraints to define the reference frame. This work was anticipated by A. Dermanis (2008) 

who derived constraint equations for different kinematic models.  

This paper presents the fundamental theoretical concepts that have been used to derive the 

latest International Terrestrial Reference Frame (ITRF). A new physical interpretation of 

the partial inner constraints involving transformation parameters is presented to supplement 

earlier work. By reviewing the various possibilities that could have been implemented to 

enhance the ITRF coordinate variations, this paper justifies the ITRF2014 chosen kinematic 

model and why it still does not include functions suggested by Dermanis (2008). 

 

 

Introduction 

Determining accurate coordinates at the Earth's surface is not straightforward since 

the reference system axes are not accessible in practice. As a consequence, a set of 

physical points whose coordinates are known is commonly used to materialize the 

terrestrial reference system and gives an implicit access to the system axes. This set 

of coordinates supplemented by statistical indicators is called Terrestrial Reference 

Frame. Those coordinates include a part of conventional information for defining 

the position of the origin of the frame, the orientation of its axes with respect to the 

crust and its scale (unit of length). One wishes that this frame be in co-rotation with 

the Earth for positioning objects at the Earth's surface.  
 
As the Earth is not rigid, points at the Earth's surface exhibit relative motions 

which indubitably lead to coordinate variations in the Terrestrial Reference Frame 

whatever its definition is. Nowadays, relative positions between points are deter-

mined by space geodesy which provides the best precision for baselines at inter-

continental distances. And all space geodetic measurements involve objects whose 

kinematic and dynamic descriptions are simplified in a celestial reference frame. 

Thus, the rotation of the Earth and coordinates of the tracking stations are solved 
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for simultaneously in space geodetic software packages. This simultaneous estima-

tion leads to a rank deficiency of the equation system to be solved since any change 

of the Earth’s rotation vector can be canceled by an opposite rotation of the coordi-

nate sets. Thus, constraints are added to define the reference frame of the station 

coordinates which make the estimated rotation vector of the Earth's motion in space 

fully dependent on the frame definition. 
 
Dermanis (2000) revisited this issue of finding the most suitable reference frame in 

an elegant way. Assuming that the coordinates of station i, written  xi(t), are known 

in an arbitrary frame, it is possible to define coordinates in a new frame xi'(t) using 

a similarity transformation  xi'(t) = s(t) R(t) xi(t) + T(t).  The fundamental problem 

of reference system consists in finding at each epoch t the scale factor s(t), the rota-

tion matrix  R(t)  and the translation  T(t)  to be applied according to an optimal 

criterion. This criterion has been historically chosen in order to simplify the equa-

tion of the Earth’s rotation in space (Munk and MacDonald, 1960; Gross, 2015) 

without introducing large coordinate changes in the terrestrial frames (Dermanis, 

2001). Tisserand frames are ideal terrestrial frames since they fulfill this condition 

(Kovalevsky and Mueller, 1984). They have an origin at the Earth's center of mass 

and an orientation which is such that the contribution of the whole Earth's deforma-

tions to the angular momentum –the relative angular momentum– is equal to zero. 

Among all existing frames, these frames minimize the kinematic energy and thus 

involve less coordinate variations (Boucher, 1989). 
 
In order to apply these concepts, the distribution of masses as well as the associated 

deformations need to be known at any point of the Earth's surface and of the Earth's 

interior. Whereas space geodesy is able to determine the Earth's center of mass po-

sition without this knowledge, this knowledge is required to define the Tisserand 

frame orientation time evolution. Also because geodetic stations are located at the 

Earth's surface, a modification of the Tisserand conditions has been adopted by the 

International Earth Rotation and Reference Systems Service. The International Ter-

restrial Reference System (ITRS) is specified as follows (Petit and Luzum, 2010, 

Chapter 4): 

1. It is geocentric, its origin being the center of mass for the whole Earth, includ-

ing oceans and atmosphere; 

2. The unit of length is the meter (SI). The scale is consistent with the TCG time 

coordinate for a geocentric local frame, in agreement with IAU and IUGG 

(1991) resolutions. This is obtained by appropriate relativistic modeling; 

3. Its orientation was initially given by the BIH orientation at 1984.0; 

4. The time evolution of the orientation is ensured by using a no-net-rotation con-

dition with regards to horizontal tectonic motions over the whole Earth. 
 
The last point is equivalent to nullify the relative angular momentum of the Earth's 

crust only. As discussed by Altamimi and Dermanis (2012b), this can be addressed 
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by a kinematic approach or by an algebraic approach. The algebraic approach is the 

one that has been used to define the orientation of the ITRF. It relies on an a priori 

knowledge of the Earth's surface motion through a geophysical model and on the 

use of inner constraints for ITRF2000 (Altamimi et al., 2001). It also requires that 

the kinematic model for coordinate variations, namely piecewise linear functions, 

is known a priori. Conversely, Athanasios Dermanis has extensively developed the 

concept of the kinematic approach (Dermanis, 2000; Dermanis, 2001; Dermanis, 

2003). This consists in the discrete computation of the relative angular momentum 

integral over the station network. In particular, he has developed the datum con-

straint equations by anticipating future changes in the ITRF kinematic model, con-

sidering that coordinate variations should not be linear anymore (Dermanis, 2008). 

Thus, polynomial functions, Fourier series and splines were suggested. 
 
We propose in this paper to review the adopted model of ITRF2014 for coordinate 

variations and explain why some of Dermanis (2008) suggestions are not yet im-

plemented. In section I, ITRF previous releases are shortly described and the ITRF 

model is presented. Altamimi and Dermanis (2012a; 2012b) theoretical work on 

datum constraint is recalled and a new interpretation of partial inner constraints 

involving transformation parameters is provided. In section II, the ITRF2014 

model is discussed and finally new seasonal parameters are discussed in section III.  

 

 

I ITRF as a parametric frame 

I.1 Regularized frame 

The instantaneous coordinates of a point in a terrestrial reference frame can be de-

scribed as follows according to the IERS conventions (Petit and Luzum, 2010, 

Chapter 4): 

 x(t) = xr(t) + ΣΔx(t) (1) 

where  xr(t)  are the coordinates at epoch t in the terrestrial reference frame, called 

regularized coordinates, and  ΣΔx(t)  is the sum of conventional corrections.  
 
Up to now, the conventional corrections include displacements at rather short peri-

ods from solid Earth tides, ocean tide loading, S1 and S2 atmospheric loading and 

pole tides (Petit and Luzum, 2010; IERS, 2015). Any other phenomenon that 

causes long-term crust motion will then be reported in the reference coordinates 

xr(t).  Thus they reflect tectonic motions, post-glacial rebound or other effects.  
 
ITRF coordinates are regularized coordinates described by simple mathematical 

functions as described in the next section. They are the result of an adjustment of 

space geodetic data including Global Navigation Satellite Systems (GNSS), Very 

long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR and 
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LLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite 

(DORIS) (Boucher et al., 1999; Altamimi et al. 2002, 2007, 2011, 2016). Thus, a 

priori conventional models  ΣΔx(t)  have been included in the processing of the 

data which means that reference coordinates implicitly include conventions with 

respect to some adopted models. A relevant example is the handling of permanent 

deformations related to solid Earth tides (Petit and Luzum, 2010, chapter 1). A 

similar situation occurs with technique-specific corrections such as antenna phase 

center corrections for GNSS (Schmid et al., 2016). Any change in the used correc-

tions impacts station coordinates, that's why the International GNSS Service (IGS) 

publishes updates of ITRF such as IGS08 for ITRF2008 every time a new correc-

tion file is released (Rebischung et al., 2012). 
 
From a user point of view, it means that terrestrial reference frame coordinates are 

related to certain conventions so that users should take care of the conventional 

corrections they add to them or use with them. For this reason, there is no attempt 

to correct technique-specific coordinate offsets in the published coordinates  xr(t)  

if the conventional models are not changed. 

 

II.2 History of ITRF products 

There have been 13 ITRS realizations published since 1988 (Petit and Luzum, 

2010, Chapter 4). Figure 1 provides a summary of the input data used in terms of 

space geodetic techniques and data span for the most recent published frames. As 

can be noticed, the input data span increases for each realization making the most 

recent ITRF superior to its predecessors. 

 

 

Fig. 1. Time spans of recent ITRF input data 
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The kinematic model of coordinate variations  xr(t)  has evolved with time starting 

with constant coordinates in the earlier period. Although a geophysical velocity 

model was advised to be used to predict coordinates in the past and future, this 

method implied regular updates of the terrestrial frame since the geophysical model 

used differs from observations. From ITRF91 (Boucher et al., 1992), velocities 

were estimated and provided to the users. The following kinematic model for refer-

ence coordinates was adopted: 

 xr(t) = xc0 + Σδxi H(t – tx,i) + (t – t0) vc0 +Σδvi H(t – tv,i) (2) 

where  H(t)  is the Heaviside function (equal to 0 when t < 0; equal to 1 when  

t ≥ 0), t0 is the reference epoch of the coordinates and  tx,i tv,i  are the epochs of dis-

continuities. In ITRF tables, coordinates are supplied to users as  (xc(t), vc(t))  such 

as: 

 xc(t) = xc0 + Σδxi H(t – txx,i) 

 vc(t) = vc0 + Σδvi H(t – txx,i) 

 xr(t) = xc(t) + (t – t0) vc(t) (3) 

The dependency of the ITRF coordinates on the epoch is handled by means of the 

solution number, the so-called “soln”. The soln is an integer which is associated to 

a time interval, so that any linear segment of the piece-wise linear function is iden-

tified by a unique integer.  
 
Although computation methods have evolved, including the use of vari-

ance/covariance information since ITRF94 (Boucher et al., 1996), the use of time 

series of frames as input data since ITRF2005 (Altamimi et al., 2007), there has 

been no change in the description of station coordinate time evolutions up to 

ITRF2014. 

 

 

II.3 Estimation model 

II.3.1 Generalities 

The ITRF estimation model for recent releases has been published in Altamimi et 

al. (2002; 2007) and more deeply conceptualized in Altamimi and Dermanis 

(2012b). In this section, we complete Altamimi and Dermanis (2012b) discussion 

by a complementary physical interpretation of the partial inner constraints also 

called internal constraints.  
 
Since ITRF2005, time series of coordinates for a set of stations were provided for 

each measurement technique. Whereas all data could be in theory combined in one 

step (Equation 1 of Altamimi et al., 2007) to provide coordinates and velocities for 

each station in a well-defined reference frame, a two-step approach was adopted 

for better data editing and to facilitate the computation. 
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In the first step, positions, velocities and discontinuities in positions and velocities, 

hereafter called coordinates, are computed for every station for each technique in-

dependently. This first step is called stacking.  
 
The second step, called combination, makes a proper average of all available data 

to provide coordinates in the same reference frame for all techniques making use 

of: 

• coordinates of stations with their associated variance/covariance matrices from 

each technique as the results of the stacking step, 

• the relative positions of instruments from different techniques located in the 

same observatory –the so– called local tie vectors determined by topometry, 

levelling and GPS technique, 

• pseudo-observations to define the reference frame of the output coordinates. 

 

II.3.2 Equation of stacking 

Equation of stacking 

The observation equation of the stacking is given below for station  i  in the input 

station coordinate set  s,  following Altamimi and Dermanis (2012a) notations: 

 
s, i c, i 0 c, i

ap ap
k k ki i

(t) (t t ) 

[ ] s

= + - +

+ + ¥ +

x x v

t x θ x
 (4) 

where  tk, sk, θk  are the transformation parameters, respectively a translation vec-

tor, a scale factor offset (with respect to 1) and a rotation vector – vectors are writ-

ten in bold. Transformation parameters are assumed to be small so that the similar-

ity mentioned in the introduction has been linearized around a priori position xi
ap 

for station  i.  Thus, the rotation matrix becomes I+ [xap x] where I is the identity 

matrix. t0 is the reference epoch of the estimated coordinates  xc,i and vc,i. In equa-

tion 4, the dependency of  xc,i and vc,i  on the epoch has been omitted but the appro-

priate coordinate parameters should be chosen in case of position and velocity dis-

continuities. The simultaneous estimation of transformation parameters together 

with station positions and velocities makes the system rank deficient (Altamimi et 

al., 2000) where the rank deficiency corresponds to the number of parameters that 

are necessary for the definition of the output reference frame. Constraints can be 

either added to parameters  xc,i and vc,i –minimum constraints also called partial 

inner constraints involving coordinates– or to parameters  tk, sk, θk –internal con-

straints also called partial inner constraints involving transformation parameters.  
 
In the current ITRF construction, both types of constraints are used, depending on 

the datum parameter to be defined. For example, internal constraints are used for 

translation and scale parameters and minimum constraints for orientation parame-

ters (see Altamimi et al. 2007; 2011; 2016). 
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II.3.3 Partial inner constraints involving coordinates 

Minimum constraints as defined by Altamimi et al. (2001) are algebraic constraints 

that are imposed on coordinates to force them to have zero transformation parame-

ters with respect to a reference coordinate dataset. 
 
They can be derived from inner constraints that involve the a priori coordinates as 

reference coordinates of the constraints. The latter read as follows (Dermanis, 

2000): 

 E
T(xc – xap) = 0 (5) 

 E
T(vc – vap) = 0 

Where  E  is the matrix of partial derivatives of coordinates with respect to trans-

formation parameters  tk, sk, θk. x
ap  and  vap  are the vectors of a priori coordinates. 

In the scope of Altamimi and Dermanis (2012b) developments, this constraint is a 

partial inner constraint involving only coordinates since the problem to be solved 

here also involves transformation parameters. However, given a constraint equa-

tion, any new constraint equation can be derived by multiplying it by an invertible 

matrix (Vanícek and Krakiwsky, 1986). Minimum constraints as defined by Al-

tamimi et al. (2001) are given as follows: 

 (ET 
E)–1

E
T(xc – xap) = (ET 

E)–1
E

T(xex – xap) (6) 

 (ET 
E)–1

E
T(vc – vap) = (ET 

E)–1
E

T(vex – vap) 

where  (xex, vex)  is an external coordinate set used as reference for the constraints.  

 

 

II.3.4 Partial inner constraints involving transformation parameters 

An alternative type of constraints involves the transformation parameters, in the 

case of stacking of station position time series. Since any input coordinate dataset 

at epoch  k  requires transformation parameters  (tk, sk, θk)  at the same epoch, time 

series of transformation parameters are actually estimated. If one wants to obtain a 

time series of transformation parameters with zero mean and zero drift, the follow-

ing equation must hold for a parameter time series  p: 

 
1 0 1

T 1 T

K 0 K

1 t t p

(A A) A 0   ;   A    ;   

1 t t p

-

-Ê ˆ Ê ˆ
Á ˜ Á ˜= = =

Á ˜Á ˜- Ë ¯Ë ¯
p p� � �  (7) 

This equation can be obtained by nullifying the least squares estimates of the con-

stant and drift of a linear regression. By performing the computation, the first equa-

tion can be simplified as follows: 
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k

k

k 0 k

k

p 0

(t t ) p 0

=

- =

Â

Â
 (8) 

This equation is the partial inner constraint involving only transformation parame-

ters (Altamimi et al., 2007, Dermanis 2012b). 
 
For a more physical interpretation of this type of inner constraints, we suggest 

working on a simplification of equation (4) where only translations would be in-

volved: 

 
s, i k c, i k 0 c, i k
(t ) (t t )= + - +x x v t  (9) 

The problem of solution numbers is easily handled since a new linear segment can 

be handled similarly by considering it as a new station. We provide an analytical 

solution of equation (9) under conditional least squares, considering  K  sets of co-

ordinates as observations and additionally assuming that 

• t0  is the average time over all  tk ,  

• the condition equation (8) applies to the three components of the time series of 

vectors  tk, 

• the input sets of coordinates have identity variance-covariance matrices. 
 
It can be shown that the stacked coordinates are in this case the following (Col-

lilieux, 2008): 
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k
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ˆ
(t t )
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=

-

Â

Â

Â
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x
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 (10) 

Thus, the estimated coordinates are those obtained from a standard linear regres-

sion without any translation parameters. The origin of the obtained frame has no 

drift and no mean offset with respect to the input frames due to equation 8. This 

result reinforces that adding constraints as in equation (8) allows defining a mean 

frame. Moreover, as proposed by Altamimi et al., (2011; 2016), it is possible to 

apply the constraint equation 8 on a subset of time indices tk corresponding to more 

reliable input coordinate sets, which allows to introduce all the other coordinate 

sets without affecting the frame definition of the combined coordinate set. In prac-

tice, those types of constraints are chosen to define the frame of the technique 

stacked solutions that contribute to the ITRF frame definition. 
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II.3.5 Combination 

The second-step of the ITRF processing is the combination. The stacked coordi-

nates from the different techniques are combined with local ties. In this process, 

transformation parameters between each coordinate dataset and the coordinates to 

be computed are estimated (Equation 1 of Altamimi et al., 2007). 14 constraint 

equations have to be added to define the frame of the output coordinates since posi-

tions at the reference epoch and velocities are linearly related to transformation 

parameters in the combination model. Because certain space geodetic techniques 

are sensitive to the origin and scale, defining the origin and scale of the combined 

coordinates consists in constraining some estimated transformation parameters to 

zero (Altamimi et al., 2001).  
 
Algebraic constraints (see II.3.3) are added to  xc(t)  to define the orientation of the 

combined frame at the reference epoch and to  vc(t)  to define the orientation time 

evolution. Since ITRF2005, the conventional time evolution of the frame orienta-

tion has been defined through inner constraints with respect to the previously re-

leased velocity field. For ITRF2000, the geophysical model NNR-NUVEL1A, that 

verifies the no-net-rotation condition as specified in the ITRS system definition, 

has been used as reference velocity field for the orientation time evolution con-

straint. The choice of the orientation time evolution impacts studies that interpret 

polar motion drift. For users interested in that particular aspect, it is still possible to 

apply afterward a rotation contribution as done in Argus and Gross (2004) in order 

to change the orientation of the ITRF, or to use the kinematic methods suggested 

by Dermanis (2001; 2008). 

 

II.4 Deficiency of the kinematic model in previous ITRF 

There have been intensive researches on the analysis of position time series of 

space geodetic stations. For example, for GNSS, studies by Dong et al., (2002), 

Williams et al. (2004) and Ray et al., (2008, 2013) are worth mentioning. In these 

studies, regularized positions and velocities are usually computed and removed 

from the determined coordinates to study their non-linear variations. 
 
The following conclusions are worth reporting: 

• Seasonal signals are evidenced in all technique estimated coordinates (Col-

lilieux et al., 2007; Altamimi and Collilieux, 2010). 

• A significant part of seasonal signals is related to real crust motions, namely 

loading effects that are the elastic deformations of the Earth due to mass trans-

ports in its fluid layers (e.g. Mangiarotti et al., 2001, van dam et al., 2001; Dong 

et al., 2002; Petrov and Boy, 2004; Collilieux et al., 2010; Fritsche et al., 2011), 

see section III.1. 

• Loading effects, especially due to ice melting, can cause large non-stationary 

signals as found by Khan et al. (2008) in Greenland. See figure 2b) for an up-
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dated plot, where a seasonal signal is also visible. 

• Non-tidal loading corrections are currently not recommended by the IERS (Petit 

and Luzum, 2010, Chapter 7). 

• Technique specific errors are likely to remain in space geodetic technique coor-

dinates (Altamimi and Collilieux, 2010; Sarti et al., 2011; Ray et al., 2013; Ap-

pleby et al., 2016)  

• Co-seismic signals affect a large number of stations (Tregoning et al. 2013, Mé-

tivier et al., 2014). 

• Silent Earthquakes affect at least one ITRF site (Schwartz and Rokosky, 2007) 

• Post-seismic signals affect a significant number of stations, especially since the 

three last giant earthquakes (Altamimi et al., 2016). 

 

 

  
 a) b) 

Fig. 2 a) G�SS position time series at THU3 (Greenland).  

 b) G�SS position time series at SAMP (Indonesia). 

 Source: http://itrf.ign.fr 
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III Station motion modeling in ITRF2014 

III.1 Non-tidal loading effects 

III.1.1 Background on non-tidal loading effects 

The elastic deformation of the Earth in response to a surface load can be computed 

using either Green's functions or a spherical harmonic expansion (Farrell, 1972). In 

order to predict deformations at a point of coordinates  Ω = (λ, φ),  both the elastic 

properties of the Earth (described by Load Love numbers for a spherically symmet-

ric, non-rotating, perfectly elastic and isotropic (Dahlen and Tromp, 1998)) and the 

distribution of the load, i.e. its surface density  σ(Ω),  have to be known. If  σ(Ω)  is 

provided as a spherical harmonic expansion, it can be written as follows: 

 c s
, m n,m ,m n,m

m 0

σ(Ω) σ R (Ω) σ S (Ω)
l l

•

=

= +Â  (11) 

where  Rn,m(Ω)  and  Sn,m(Ω)  are not normalized and related to associated Legendre 

polynomials by  Rn,m(Ω) = Pnm(sin φ) cos(mλ)  and  Sn,m(Ω) = Pnm(sin φ) sin(mλ). 

The horizontal and vertical displacements can be computed by (Blewitt et al., 2001; 

Blewitt, 2003): 
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h4πR
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with  l'n  and h'n  the load Love numbers of degree n, R the mean radius, M the 

mass of the Earth and —
�

 is the unit surface gradient operator (Blewitt and Clarke, 

2003). 
 
Thus, forward non-tidal loading models can be derived using numerical models of 

the mass distributions. Most of the time, forward models are generated by separat-

ing fluid layers (van Dam, 1994; van dam et al., 2001; van Dam et al., 2012) such 

as the atmosphere, ocean non-tidal mass transport, continental hydrology and ice 

sheet mass variations. However, care should be taken when summing models from 

various sources (Clarke et al., 2005) since interactions exist between the different 

fluid layers (exchange of water). The different models are available with various 

time samplings, from 3 hours to 1 month, and various spatial resolutions.  
 
As discussed by Blewitt (2003), load Love numbers of degree-1 are dependent on 

the reference frame of the computed displacement field which are most often the 

center of mass of the solid Earth (CE), the geometric center of the solid Earth's sur-

face (CF) or the center of mass of the whole Earth system (CM). CM is the natural 
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frame for satellite techniques. The variations of the vector CM with respect to CF 

are usually called geocenter motion and the contribution of the gravitational attrac-

tion of the mass variations at the Earth’s surface and associated elastic deforma-

tions can also be computed by using only degree-1 coefficients of  σ(Ω): 

 

c

113

s

CF CM 1 1 CE 11

c

10

σ
1 4πR

[t ] [h 2 ] 1 σ
3 3M

σ

l

Ê ˆ
Ê ˆ Á ˜= + -¢ ¢Á ˜ Á ˜Ë ¯ Á ˜Ë ¯

�

 (14) 

The variations of CF with respect to CE are very small, about 2% of the geocenter 

motion magnitude for elastic deformations (Dong et al., 1997). As stations are at-

tached to the Earth's surface and because the analysis of translation parameters par-

tial derivatives makes appear the barycenter of the station network (Dong et al., 

2003; Collilieux et al., 2009), net translations of a geodetic network with respect to 

mean coordinates are close to the opposite of geocenter motion. It is fundamental 

to understand that the geocenter motion is a part of the loading effects themselves 

and should be ideally treated simultaneously. Recent annual geocenter motion es-

timates predict translations with amplitudes at the level of 3-4 mm along the X, Y 

and Z components (Collilieux et al., 2009). Thus, mean coordinate variations in the 

CM frames are close to the geocenter motion magnitude (Dong et al., 2003). 

 

III.1.2 Handling of non-tidal loading effects 

In the ITRF releases, non-tidal loading effects have been ignored since they were 

expected to be averaged out when computing positions and velocities from long 

enough datasets (Blewitt and Lavallée, 2002). However, for stations with a few 

observations, station positions and velocities have been reported to be biased by 

loading deformations (Collilieux et al., 2010), affecting station coordinates from 

different techniques at co-location sites. This also means that if one wants to sum 

ITRF coordinates with a non-tidal loading displacement model, small biases may 

be generated since ITRF coordinates may have already captured a possible drift 

related to non-tidal loading effects. 
 
There are mainly two ways to handle non-tidal loading effects according to equa-

tion (1): 

• to correct for a non-tidal loading model, i.e. to model the non-tidal loading ef-

fect in the term  ΣΔx(t), 

• to add new parameters in the regularized coordinate kinematic model  xr(t).  
The first alternative is in theory the most rigorous. Indeed, it allows accounting for 

the effects over the whole power spectrum from sub-daily periods to long periods. 

When processing data for determining a reference frame, loading corrections 

should be ideally made at the observation level, which in addition allows modeling 

the induced effect on the geopotential for satellite techniques. The inclusion of 
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such models has been shown to reduce observation residuals although non-tidal 

loading models are not free of errors, for example evaluated at the level of 15% of 

the effect for non-tidal atmospheric loading (Petrov and Boy, 2004). Hydrology 

models, for instance, show large discrepancies, particularly in the treatment of gla-

ciers, ice sheets and lakes (e.g. Rodell et al., 2004). Due to the data processing time 

that can be important especially for GNSS and because they are quicker and more 

flexible, a posteriori corrections which consist in correcting coordinates by the 

mean load effect over the whole data integration time have been also studied (Tre-

goning and Watson, 2009). However, Dach et al. (2011) have suggested a relevant 

way to add geometric loading model corrections in the software packages while 

providing a rigorous way to remove them. They have added parameters to scale the 

non-tidal loading model corrections in the normal equations which allow applying 

the loading model or not by fixing them to zero or one when inverting the normal 

system.  
 
The second alternative consists in estimating the loading displacement from station 

coordinates based on equation (12) and (13) as proposed by Blewitt et al. (2001). 

Rülke et al. (2008) were the first to estimate station positions and velocities simul-

taneously with load spherical harmonic coefficients. They estimated them on a 

monthly basis up to degree 6. The method allows modeling the geocenter motion 

effect with its associated degree-1 deformation with a relevant time sampling but 

the truncation degree used was too small to capture all non-tidal loading signals. 

Increasing the truncation degree would require to use additional datasets such as 

GRACE data (Wu et al., 2006), but the time span of the mission starting in 2002 

does not cover the whole ITRF data period (see figure 1).  
 
Dermanis (2008) suggestion of extending the station coordinate kinematic model to 

other function types is a relevant alternative since the main observed coordinate 

variations can be captured by parametric functions. Polynomials, splines and har-

monic functions were suggested. Polynomial functions could for example capture 

the accelerations observed in figure 2 for station THU3 in Greenland. However, it 

is not certain that coordinates will follow the same pattern after the publication of 

the regularized coordinates. Indeed, the kinematic coordinate model is used to ex-

trapolate coordinates in the future for routine precise orbit determination. Spline 

functions also fail to provide reliable extrapolations of coordinates although they 

provide an excellent fit to the data. Periodic functions are more relevant and were 

already used in reference frame analyses (Meisel et al., 2009). They have the ad-

vantage of providing a more reliable estimation of station velocities (Blewitt and 

Lavallée, 2001). In addition, as many position discontinuities are evidenced in par-

ticular in GNSS position time series, the addition of periodic parameters in the 

functional model improves the estimation of offsets. The main drawback is that 

periodic terms may also absorb technique-specific errors. In addition, they are not 

constant in time (Chen et al., 2013), but their amplitudes vary moderately. Some 
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cases of drastic seasonal signal changes in GPS coordinate series have been re-

ported (Ray, 2006) but they were related to equipment changes. 

 

III.2 ITRF2014 coordinate modeling and estimation model 

For ITRF2014, the ITRS product center explicitly asked not to correct for non-tidal 

models at the observation level. But tests have been carried out to correct for non-

tidal atmospheric loading a posteriori (Altamimi et al., 2016) during the ITRF 

preparation. However, the adoption of periodic parameters was preferred since they 

impact most significantly the estimated velocities. That’s also why only annual and 

semi-annual periods have been considered, since other frequencies have a smaller 

impact on the estimated reference positions and velocities (Altamimi et al., 2016). 

However, seasonal parameters were not published as part of the coordinate kine-

matic model, see discussion in section III.3.  
 
New functions have been used to model post-seismic deformations at stations 

where it was needed. The reader is referred to the appendix C of Altamimi et al. 

(2016) for a complete description of the post-seismic models that were adopted. A 

model, hereafter written  δPSD(t),  is made of a combination of exponential and 

logarithmic functions with various relaxation times. Not more than two functions 

are used per earthquake and coordinate component in a frame directed along the 

parallel, the meridian and the normal at the ellipsoid at the station location. For sta-

tions far from the earthquake epicenter,  δPSD(t)  is set to zero since the post-

seismic motion can be represented by position offsets and constant velocity 

changes, as done in previous ITRF releases. Figure 2b) shows a station affected by 

significant post-seismic signal. The piece-wise linear function part from the kine-

matic model is shown in green and the complete model including the correction 

δPSD(t) in red. As evidenced in this figure, users need to take the post-seismic de-

formation models δPSD(t) into account when using ITRF2014 positions and ve-

locities. 
 
Equation (4) of the stacking has then been modified as follows: 

 

s, i c, i 0 c, i

j j
j 0 j 0i i

j

ap ap
k k ki i

(t) δPSD(t) (t t )

cosω (t t ) sinω (t t )

[ ] s

- = + -

+ - + -

+ + ¥ +

Â

x x v

a b

t x θ x

 (15) 

where two frequencies ωj/(2π) were introduced (1 and 2 cycles per year). At a spe-

cific frequency, the signal is parameterized by sine and cosine amplitudes making 

the model linear. The term δPSD(t) has been estimated beforehand from GNSS 

input coordinate series, the best model being selected by a statistical method. Input 

series have then been corrected for that model which was assumed identical for co-

located stations.  
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Even if the post-seismic models  δPSD(t)  were set up and the associated parame-

ters were estimated in the stacking, the addition of these parameters would not 

cause an additional rank deficiency in the normal equation of the stacking. Indeed, 

post-seismic models only affect a part of the whole station network. Conversely, as 

periodic parameters are added for all stations, supplementary rank deficiencies are 

added to the normal equation for each frequency (Petrov and Ma, 2003) due to the 

simultaneous estimation of transformation parameters. For example, any periodic 

signal  (aj, bj)  added to all stations can be canceled by subtracting the same signal 

from the estimated translations.. As a consequence, condition equations must be 

added for every frequency. It is either possible to add constraints on the station pe-

riodic signals or on the transformation parameters. 
 
As done for equation (7), it is possible to first cancel periodic signals at every fre-

quency  ωj/(2π)  in the transformation parameters, which gives for a transformation 

parameter  p : 

j 1 0 j 1 0 1
T 1 T

j K 0 j K 0 K

cosω (t t ) sinω (t t ) p

(A A) A 0   ;   A    ;   

cosω (t t ) sinω (t t ) p

-

- -Ê ˆ Ê ˆ
Á ˜ Á ˜= = =
Á ˜ Á ˜- - Ë ¯Ë ¯

p p� � �  (16) 

This condition can be used for canceling the annual signal in the scale parameter. 

Indeed, it is likely that most of the seasonal variations in the scale parameters be 

related to loading signals (Collilieux et al., 2010). If applied to the translation pa-

rameters, this constraint transfers any seasonal net-translation of the network to 

station seasonal parameters.  
 
The alternative approach consists in constraining the seasonal parameters ai

j and 

bi
j.  By writing  αj = [a1

j... ai
j ... an

j]T  and  βj = [b1
j... bi

j ... bn
j]T,  minimum con-

straints can be added as follows: 

 (ET 
E)–1

E
T(αj – αj, ap) = (ET 

E)–1
E

T(αex
j – αj,ap) (17) 

 (ET 
E)–1

E
T(βj  – βj, ap) = (ET 

E)–1
E

T(βex
j – βj, ap) 

where  αex
j
 and βex

j
  have been fitted from an existing loading model or from 

GRACE observations. 
 
This algebraic constraint provides an alternative to the equations derived by Der-

manis (2008) to explicitly cancel the relative angular momentum of the network 

accounting for seasonal signals. In order to be relevant, the constraint of equation 

(17) should be applied with respect to a model which verifies a no-net-rotation 

condition. In the loading theory that has been briefly introduced in section III.1, a 

rotation is described by the toroidal term of degree-1. But no degree-1 toroidal de-

formation is possible when the external forcing is a load on the spherical surface 

(Métivier et al., 2006). Thus, the no-net-rotation condition of the loading model is 

transferred to the estimated seasonal terms as currently done for the orientation lin-

ear time evolution of the reference frame. 
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III.3 Estimated seasonal parameters 

The estimated annual and semi-annual periodic signals as the result of the stacking 

are dependent on the constraints that have been applied as described in the previous 

section. In ITRF2014, the following options have been used in the stacking of the 

four techniques: 

• Equation (16) was applied to cancel annual and semi-annual signals in the trans-

lation and scale parameters. 

• Equation (17) was applied to define the orientation of the seasonal parameters 

over well distributed sets of stations. No external loading model was used as 

reference for the constraints, i.e.  αex
j
  and  βex

j  were set to zero. 
 
The first constraint impacts the origin of seasonal periodic signals which is theo-

retically CM for satellite techniques. However, as already found in various studies, 

the origin of DORIS, SLR and GNSS frames differ at seasonal time-scale (see fig-

ure 9 from Rebischung et al., 2016; Altamimi et al., 2016; Ray et al., 1999). In ad-

dition, for ITRF2004, geocenter parameters have been introduced in all input 

GNSS frames while GNSS station coordinates have been aligned to IGb08 frame 

(Rebischung et al., 2016) which makes the estimated ITRF2014 GNSS seasonal 

parameters more consistent with CF frame. The obtained frame origin of VLBI 

seasonal signals is also arbitrary because the origins of the input VLBI coordinate 

datasets have been constrained to an a priori coordinate frame beforehand. It is thus 

likely that mean seasonal biases exist between technique-specific estimated sea-

sonal signals.  
 
The second constraint affects the estimated polar motion coordinates. Due to the 

limited number of stations and their distribution in space, the station displacements 

due to loading generate a small residual rotation. According to Collilieux et al. 

(2012), this residual rotation can be mitigated when a well-distributed network of 

station is used, which explains the constraint chosen to define the orientation of the 

seasonal signals in the ITRF2014 computation. 

Because the seasonal signals of the different techniques are not provided in the 

same reference frame as discussed above and because they were not combined in 

ITRF2014, they have not been provided to enhance the ITRF kinematic coordinate 

model. The question of delivering a unique seasonal displacement for all stations at 

the same co-location site needs also to be addressed. Indeed, whereas we could in 

principle expect the averaged seasonal signal to be more reliable than any individ-

ual one at co-location sites, it cannot be ensured as long as the origin of their dis-

crepancies is not understood. In addition, seasonal signals should be provided in 

the CM frame according to the ITRS specifications. It would require that the SLR 

origin of the seasonal parameters be transferred to other technique seasonal pa-

rameters. And this could be done reliably only if technique specific seasonal pa-

rameters are similar (in the sense of a 6-parameter similarity) over the set of com-
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mon stations. As a conclusion, seasonal parameters at co-located stations should be 

carefully analyzed before attempting their combination. 
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