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Περίληψη: Στην εργασία αυτή αναλύεται το πρόβλημα της αξιολόγησης των παρατηρή-

σεων σ’ ένα μικτό γραμμικό μοντέλο χρησιμοποιώντας τις τεχνικές του στατιστικού ελέγ-

χου των ακραίων τιμών, οι οποίες στην περίπτωση αυτή των μικτών μοντέλων παρουσιά-

ζουν ιδιαίτερες δυσκολίες, καθώς ελέγχονται τα ολικά υπόλοιπα και δεν μπορεί να γίνει ο 

διαχωρισμός των τυχαίων επιδράσεων από τα σφάλματα των παρατηρήσεων. Αντιμετωπί-

ζεται και η περίπτωση κατά την οποία προκύπτει το πρόβλημα της εμφάνισης αγνώστων 

συνιστωσών της μεταβλητότητας αναφοράς, ένα θέμα που συνοδεύει συνήθως τα μικτά 

μοντέλα. Τότε, και όταν οι βαθμοί ελευθερίας είναι μικροί, εμφανίζεται το πρόβλημα υπο-

λογισμού των βαθμών ελευθερίας των κατανομών που χρησιμοποιούνται στους παραπάνω 

στατιστικούς ελέγχους. 

 

Λέξεις κλειδιά: Μικτά γραμμικά μοντέλα, στατιστικοί έλεγχοι υποθέσεων, βαθμοί ελευ-

θερίας, έλεγχος σφαλμάτων.  

 

 

Abstract: In this article the problem of evaluating the observations using the techniques 

of statistical testing of the residuals in a mixed linear model is analyzed. In this case, these 

techniques of testing present particular difficulties, as the quantities that are tested are the 

total residuals and the separation of the random effects from the errors of the observations 

cannot be realized. We are also dealing with the problem of the occurrence of unknown 

variance components, a topic associated usually with the mixed models. Then, and when 

the degrees of freedom are low, the problem of calculating the degrees of freedom of the 

distributions used in the above statistical tests arises.  

 

Keywords: Mixed linear models, hypothesis testing, degrees of freedom, outliers, residu-

al analysis. 
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Whoever knows the ways of Nature will more easily notice her devia-

tions; and, on the other hand, whoever knows her deviations will more 

accurately describe her way. 

Francis Bacon, 1620 

 

 

1. Introduction 

In statistics and data analysis, errors, outliers and residuals are three closely related 

and easily confused measures of the deviation of an observed value, of an observa-

tion or an element of statistical sample, from its "theoretical value". The error of an 

observed value is the deviation of the observed value from the unobservable true 

value of the observed quantity. Modern developments in the treatment of errors 

include robust estimation methods and outlier detection methods. An outlier, ac-

cording to the definition of Hawkins (1980), is an observation, which deviates so 

much from the other observations as to arouse suspicions that it was generated by a 

different mechanism. The diagnostic tool for the detection of outliers is the proce-

dure called analysis of the residuals. The residual of an observed value is the dif-

ference between the observed value and the estimation of the true value of the ob-

served quantity. Unfortunately, the residuals are not only related to the existence of 

errors in the observations, but also to the selection of a proper mathematical model 

to describe the observations and generally, they are related to all hypotheses that 

we are making during the analysis of the specific measurements. 
 
Undoubtedly, the outliers have a long history. Obviously, in the words of Francis 

Bacon, if anyone could identify the "problematic" observations in a data set, then 

he could understand better the phenomenon that he studies. However, if one was 

well aware of the phenomenon that he studies, he could easily identify observations 

that are not in agreement with the other and thus he can improve the estimates and 

draw more correct conclusions. 
 
The first reference to the outliers seems to be a work of Daniel Bernoulli in 1777, 

which refers to results obtained by combining more measurements than needed. In 

his work Bernoulli disagrees to the rejection of a number of measurements on the 

ground that they initially seem that they don’t agree with the other, a tactic that the 

astronomers and geodesists of that era were following, such as Roger Joseph 

Boscovich, who rejected two of the ten measurements of the polar star for the cal-

culation of the Earth's ellipsoid in 1750. It is however a curious feature in geodesy 

of the late 18th century, while precision in the measurements had become an obses-

sion, no one dealt with the mathematical part of the analysis of measurement er-

rors. The older geodesists did not interpret, neither systematic or random errors, 

nor the almost inevitable changes in the behavior of the instruments over the years, 

although it was believed that having many repeated measurements and removing 
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outliers, these errors would be limited. It was destined the great mathematical in-

novators Andrien Marie Legendre and Carl Friedrich Gauss to develop the method 

of least squares in the early 19th century and begin the story of outliers’ detection 
 
Then, during the 19th century, the first efforts for the development of criteria for 

the recognition of problematic observations, based on the criterion of least squares, 

were presented in a work of the American geodesist Benjamin Peirce (1852). It was 

75 years after Bernoulli and 45 years after the issue of the method of least squares 

and the practice of rejecting outliers continued to be common and popular in the 

analysis of the observations. But the work of Peirce caused a plethora of publica-

tions, which were critical of Peirce’s criterion for the detection of outliers, but also 

new criteria appeared. We mention as most important work of Gould (1855), Airy 

(1856), Wintlock (1856), Chauvenet (1866), Stone (1868), Glaisher (1873, 1874), 

Edgeworth (1887) and Saunders (1903). 
 
From these articles we distinguish the one of the English geodesist and astronomer 

George Biddell Airy (1856), who rejected Peirce’s criterion, motivated by a scale 

error in the dimensions of Britain reference ellipsoid, probably caused by retention 

only of "observations that are in greater agreement between them". Airy argued 

that, although some observations seem to be outliers, all must be considered and 

none observation should not be refused if a convincing reason to be able to support 

the argument that some unusual causes of errors have influenced it, does not exist. 

Like Bernoulli, he believed that the average of all observations should be taken in 

order to be exploited all of them with the same weight, as all of them contain valid 

information. Realizing that the philosophy of doesn’t be rejected an observation, 

matter how big is his difference from the average, in contrast to common sense 

analysis of the overall behavior of the errors, he didn’t reject the observation, but 

the assumption of normal distribution of errors. Some years before Airy, the Ger-

man geodesists Bessel and Baeuer (1838) also reported that all observations must 

be taken into account with the same weight in the calculations and they didn’t re-

ject an outlier in the work of connecting the Prussian national network with the 

Russian one. 
 
Despite efforts to find a criterion for detect and rejection of suspect observations, it 

had to come in 1960 to be searched the solution in the implementation of the 

checking the general hypothesis. The precursor of this important chapter of modern 

statistical analysis, was an article of Karl Pearson (1900). By comparing the ob-

served values by those provided by incidence rates for, Pearson calculated a statis-

tical criterion that follows the same distribution regardless of the type of used data. 

He could summarize the probability distributions of this statistical criterion at one 

distribution and use the same tables for each control. This distribution belonged to 

a group of oblique distributions that had already been defined in 1876 by the Ger-

man geodesist Friedrich Robert Helmert (1876) using the Greek letter “χ”, as Chi 

Square Distribution. The test has a single parameter, which called degrees of free-
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dom by Ronald Fisher in a paper of 1922, a term used ever since in data analysis to 

define the available redundant information. 
 
In 1908 William Sealy Gosset introduced the t-distribution for small samples and 

published his work under the pseudonym "student" while respecting the great 

teachers of statistic and the criterion t is called since then "student criterion". The 

term “studentized residuals” was given in honor of this great and modest statisti-

cian, because the idea of the division of the residual to its estimated standard devia-

tion is central in the logic of his test. 
 
The most significant work of Ronald Aylmer Fisher (1918) is considered as a mile-

stone in the history of statistics and outliers. Fisher introduced the technique of 

analysis of variance for the test and separation of "significant" results from random 

errors. The terms variance and analysis of variance were used for the first time in 

this work. He also raised the matter of the estimation of the components of the ref-

erence variance, which the Fisher named components of variation. In a next article 

(1924), he presented the chi-square Pearson’s test and t-test of William Gosset in 

the same frame with the normal distribution and the analysis of variance, using the 

more general distribution, used by then as F-distribution. 
 
Subsequently, Pole Jerzy Neyman developed the idea of the estimation of the con-

fidence interval and its application on the hypothesis testing and formulated the test 

of the null hypothesis, in collaboration with Karl Pearson's son, Egon. In develop-

ing their theory, Neyman and Egon Pearson recognized the need for the formula-

tion of an alternative hypothesis, and they defined the possible erroneous decisions 

in checking the null hypothesis. They called first type error the error of rejection of 

a true hypothesis and second type error the error of the acceptance of a false hy-

pothesis. They paid attention to the possibility of rejection of a hypothesis when it 

is false. They called this possibility power of test and proposed the term critical 

region to denote a set of sample statistical values that lead to rejection of the hy-

pothesis being tested. The "area" of the critical region, which they called level of 

significance, is the probability for the first-type error. On the problem of rejecting 

outliers perhaps the most important work until that age is the article of Egon Pear-

son and Chandra Sekar (1936)1. 
 
Hypothesis testing and analysis of residuals has been introduced to geodesy by the 

pioneering work of W. Baarda (1968) for the case of the linear model with only 

deterministic parameters and was later extended by Pope (1976) for the case that 

the accuracy of the observations is a-priori unknown. During the 80s and 90s, inte-

grated geodesy involves also stochastic parameters and therefore relates to the 

                                                      

1. Harter (1978) gives an extensive history of the development of the method of least squares and 

statistical tests, which refers widely to the issue of outliers’ detection and rejection. Analysis and 

discussion of methods for identifying and rejecting outliers until recent times is made by Beck-

man and Cook (1983), while a full report in the literature until 1933 has be made by Rider (1933). 
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mixed linear model or least squares collocation in geodetic terminology. The prob-

lem of hypothesis testing in relation to the integrated geodesy has been studied by 

Dermanis and Rossikopoulos (1997), in relation to the least squares collocation by 

Wei (1987), Krakiwsky and Biacs (1990) and in relation to the mixed or random 

effects linear model by Schaffrin (1987, 1988) and Bock and Schaffrin (1988). The 

outlier detection procedures can be applied to the error in variable models and total 

least squares problems seen as mixed linear models, as proposed by Amiri-

Simkooei and Jazaeri (2013). 
 
In recent years due to the development of computers and modern forms of geodetic 

observations, the study of the residuals and outliers has received particular signifi-

cance under the analysis of data. This is so because a wrong observation can affect 

significantly the analysis of the observations and may lead to inaccurate results. 

However, in some cases the outliers are of particular interest as they may not be 

due to wrong observations and their analysis can lead to new knowledge or discov-

eries. In this paper the problem of implementation of the test of the general hypoth-

esis to the residuals of the observation is analyzed, in order to identify systematic 

effects and blunders in analysis with linear mixed model. 

 

 

2. The mixed linear model 

Saying linear mixed model in statistics we mean a linear system of equations con-

taining as unknowns fixed effects (or deterministic parameters) and random effects 

(or stochastic, or random parameters). The random parameters are considered to be 

normally distributed with zero expectation. These models constitute a generaliza-

tion of the variance analysis, the principal components analysis and the linear re-

gression methods. They are useful in a wide range of scientific disciplines, in all 

sciences that are based on observation and measurement or that require methods for 

evaluation of the measurement uncertainties, such as physics, biology, pharmaceu-

tical, economic and medical sciences in general, in the calibration of instruments 

and measuring systems, in creating intervals of tolerance in industrial applications 

and general on laboratory comparisons in metrology, in analyzing spatial data, 

classified and categorized data, as well as data from temporal and repeated meas-

urements, as for example in geodetic science. 
 
The mixed linear model has the form 

  uZXy   (1) 

where y  is the 1n  vector of the observations,   the 1r  vector of fixed effects, 

u  the 1q  vector of random effects ( 0u }{E ) which is accompanied by the co-

variance matrix K  and 



  the 1n  vector of random errors ( 0}{E ) which is 

accompanied by the covariance coefficient matrix Q . The rn  matrix X  and the 
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qn  matrix Z  are the known matrices of coefficients of unknown parameters. 
 
If we call  uZv  the stochastic part of the observation equations, or else the 

    



n1 vector of marginal residuals, the matrix of their covariances is 

    



M  ZK ZT Q  and the system of the above equation is written 

vXy   (2) 

The Best Linear Unbiased Estimation BLUE of the deterministic parameters   is 

given by the relationship 

1 1 1ˆ ( )T T   X M X X M y  (3) 

which, if we assume that the stochastic variables   



ui  and the errors i  follow the 

normal distribution, is the same as the minimum square criterion 

.min111    QuKuvMv TTT  (4) 

The Best Linear Unbiased Prediction BLUP of the random (or stochastic) parame-

ters   



u  follows that it is 

)ˆ()(  

)ˆ()(ˆˆ

1111

11





XyQZKZQZ

XyQZKZKZvMKZu









TT

TTT

 (5) 

as easily demonstrated that       



KZT (ZKZ T Q)1  (ZTQ1ZK1)1ZTQ1, while 

the best linear unbiased prediction of the observational errors of the is  

uZXyXyQZKZQvMQ ˆ ˆ)ˆ()( ˆ ˆ 11    T  (6) 

From the above relations it also follows that  

εuZXyMQKZv ˆˆ)ˆ()(ˆ 1   T  (7) 

The covariance coefficients matrices of the estimated parameters β̂ , û  and ε̂ , are 

given by the relations 

1 1 1 1 1 1 1 1 1

ˆ ( )  [( ) ( )( ) ( )]T T T T T



           Q X M X X Q X X Q Z Z Q Z K Z Q X  

 ])( )()([)(     

     

  ))(( 
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ˆ
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1111
ˆ
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







KZQZZQXQXQZIKZQZ

KWKKZWZK

KZMXXMXXMMZKQ

TTTT

uu
T

TTT
u



  

1111
ˆˆˆ )( )(   KZQZZQXQQ TT

u 
 (8) 

and  
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QWQQMXXMXXMMQQ    1111
ˆ  ))( ( TT  

where ZWZW 
T

uu   and the matrix   



W  is defined from the relation 

vWMv ˆ  and is given for the GLM ( .min , 1   vMvvβXy T ) as 

11111 )(   MXXMXXMMW TT
  (9) 

In linear mixed models, apart from the estimation of unknown parameters  , the 

components of the reference variances of the covariance matrices   



Q and   



K also 

play an important role. By applying methods of estimating the variance compo-

nents, the contribution of each random effect to the variance of each observation as 

well as its significance is estimated. This process is particularly important and fun-

damental in the analysis of mixed models, as one can determine where he should 

focus his attention in order to correctly describe the behavior of the random param-

eters and to correctly select the weight matrix of the observation values. 
 
A useful application of the statistical tests is the detection of one or more   



yi  obser-

vations that do not follow the model and whose removal will lead to a more suc-

cessful adaptation of it to the other parameters. In general, total residuals   



vi  or er-

rors   



 i are often used to evaluate the validity of the assumptions about the statisti-

cal and mathematical models and can also be used as tools to identify possible out-

liers or more generally to identify effects that require more attention. 

 

 

3. Residual analysis in mixed linear models 

To detect "problematic observations", those that may have to be removed from the 

calculations because they contain outliers, we separate three types of residuals that 

can be checked for possible disturbances. These are (Nobre and Singer 2007): 

α. the observational errors (conditional residuals): uZXy ˆˆˆ    

β. the random effects:  ˆˆˆ  XyuZ , and 

γ. the marginal residuals:  ˆˆˆˆ  uZXyv . 
 
Testing for outliers is an application of the test of the general hypothesis to the sto-

chastic parameters of the linear model and results from a comparison of the esti-

mates β̂ , v̂ , ̂  and f  of the initial equations (1) 

   uZXy  (10) 

which in this case are the constrained equations for the zero hypothesis (   ) 

that is tested, with the extended equations  

   UuZXy  (11) 



90 Dimitrios A. Rossikopoulos 

 

where the 1k  vector   contains the errors of observations that were not taken 

into account in relation (1) and U  is the kn  known matrix of their coefficients. 

These equations lead to new estimates 



ˆ  , ̂ ,  



ˆ v  ,



ˆ   and   



f . In the above equa-

tions   denotes the least squares criterion and f  the corresponding degrees of 

freedom. Equivalently, the two previous relationships are written 

 vXy    (12) 

 vUXy    

The first work in which this extension of the linear equations is proposed as a basis 

for detecting outliers has been given by Srikantan (1961) and Ferguson (1961). 
 
Initially, let us consider for the sake of simplicity a common reference variance 2̂  

for all stochastic parameters according to the relation 

)) ( ,(~ 2 TZKZQ0v      ή    ) ,(~ 2M0v   (13) 

the estimate of which is calculated by the formula 

   MW

uKuQ

MW

vMv






trtrf

TTT ˆ ˆˆ ˆˆ ˆˆ
ˆ

111
2

 



 (14) 

where  MWtrf   are the degrees of freedom. The total significance test  

0:oH   ~  0:aH  (15) 

of the new parameters of the extended linear equations, is an application of the test 

of the general hypothesis and derived from the comparison of the results of the ex-

tended equations (11) with the results of the initial equations (10). This comparison 

can be derived from the results of the solution only of the extended linear equations 

kfk

T

T F
kk

F 



  ,2

1
ˆ1

ˆ  ~
ˆ 

ˆˆ
ˆˆˆ

 

1





 




Q
 (16) 

where it was considered that kff  , or may result from the comparison of the 

two solutions 

kfkF
k

ff

k

f
F 





 ,2

22

 ~ 
ˆ

ˆˆ

ˆ

ˆˆ
















 (17) 

or it may result from the solution only of the initial linear equations 

 kfkF
k

kf
F 




 , ~ 

ˆˆ

ˆ




  (18) 

where applies in any case  ˆˆˆ 1
ˆ



 QT , while the estimates ̂  of the new pa-
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rameters and their covariance coefficients matrix   



Q ˆ  result from the solution of the 

initial equations  vXy    according to the equations 

111111

11
ˆ

1
ˆ

)(] ))(([     

) (









UWUUMXXMXXMMU

UMQMUQ





TTTT

v
T

 (19) 

vMUQ ˆ  ˆ 1
ˆ

T
  (20) 

Finally, the difference in optimization criterion  ˆˆˆ   is calculated as 

vMUUWUUMv ˆ )(ˆˆ 111  TTT
   (21) 

from the results of the solution of the initial equations. 
 
After arithmetic operations, where we considered that 

)(ˆ)(ˆ~ 22 kffkf     (22) 

results that the test for outliers is based on the test statistic 

2
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 (23) 

calculated from the initial linear equations (1), where the 2
, kfkT   distribution could 

be called a “generalized” Hotelling’s T-square distribution with degrees of freedom 

k  and kf  . Alternatively, it is based on the test statistic 

kfkF
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


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 (24) 

The above alternative formulas are based on the relations 
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
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


  (25) 

which links the "generalized" Hotelling distribution with the F distribution. 
 
The degrees of freedom kf   of the distributions of the above statistical tests 

are valid if they are small and at the same time if the variance components are ne-

glected considering a common reference variance for all stochastic parameters, ac-

cording to the relation (13). If we consider that the absolute accuracy of the obser-

vations is known, or equivalently, if the degrees of freedom kf   are very 

high, (e.g. 100 ), the test takes the form 

 ,~ 
ˆ

kF
k

F


    or   2~ˆ
k   (26) 
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irrespective of the way of calculation of the quantity  ˆ . 
 
The test becomes more compound in the case of unknown absolute accuracy of the 

stochastic parameters and the simultaneous acceptance of the model of the variance 

components. In this case, the degrees of freedom   depend on the structure of the 

stochastic model of random parameters and on the way that the variance compo-

nents are calculated. Their calculation is usually approximated by numerical analy-

sis methods. In this case, a method of calculating the degrees of freedom for the 

test of general hypothesis is given by Satterthwaite (1946), Giesbrecht and Burns 

(1985) and Fai and Cornelius (1996). First, let's see the application of the above to 

the test of a single observation, assuming that all other observations are correct, 

without errors. The technique of applying the test for outlier detection to a single 

observation is known in the geodetic literature as “data snooping” (Baarda, 1968)2.  
 
In the case of testing a single observation, e.g. of   



yi , the extended equations are of 

the form 

  iieuZXy  (27) 

or equivalently, the initial and the extended system of linear equations are written 

 
veXy

vXy





i



ˆ

 
  (28) 

where   



 i is the error of the   



yi  observation, which was ignored in previous 

calculations of the initial equations and     



e i is the   



i  column of the matrix     



In . 

According to the above, this comparison can be derived from the results of the 

solution of the initial system of linear equations (2) or (9) only, or it can result from 

solving the extended equations (27) only, or by comparing the results of the 

solutions of the two systems. We will deal with the first case only, the application 

of statistical tests to the results of the solution of the initial equations. 
 
In this case and when the marginal residuals v  of the initial equations vXy   

are testing, the modified residuals are calculated (Dermanis, 1987) 

 vM ˆˆ 1   (29) 

where  vWMuZv  ̂ˆˆ  and       



W  M1 M1X(XT M1X)1XT M1. 
 
From the above relation, if the law of variance-covariance propagation is applied, 

the coefficient matrix of variances and covariances of quantities ̂  results 

                                                      

2. The term data snooping appears in the statistical literature before Baarda (1968). It is an individu-

al statistical process in the more general procedure of data analysis called Data-Dredging: Snoop-

ing is the process of testing from the data all of a predesignated (though possibly infinite) set of 

hypotheses (Selvin ans Stuart, 1966).  
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
WMXXMXXMMMQMQ   11111

ˆ
1

ˆ  ))(( TT
v  (30) 

where TT
v XXMXXMQ 11
ˆ )(  . According to the equations (19) and (20), it 

follows that 

ii

i
i

][

ˆ
ˆ

̂




Q
    and   iiiiiqQ ][][)ˆ(/1 ˆ

21
ˆ 

 WQ   (31) 

The test of the iy  observation is therefore based on the studentized error 

 



 ~

)ˆ(ˆ

ˆ

i

i
i    ,   iii )ˆ()ˆ(ˆ  W   (32) 

which follows the   (tau) distribution with   degrees of freedom. The tau distri-

bution was devised by W. R. Thompson (1935) and became known in the geodetic 

literature by A. J. Pope (1976), who formulated the above-mentioned form of sta-

tistical test.  
 
Regarding the degrees of freedom   of the above distribution, they are calculated 

as the case may be, according to the following: 
 
a. For very high degrees of freedom (e.g. 100f ) or for known accuracy of ob-

servations, it can be assumed that   and the tau distribution is identical to 

the standard normal distribution )1,0(N . The test has been given in this form in 

the pioneering work of Baarda (1968) with title “a testing procedure in use in 

geodetic networks”, who used the term "data snooping" for the technique with 

which the test is applied.   

b. For low degrees of freedom f  and for a common variance of unit weight 2  

according to the relationship (13), they are given as f  (Pope 1976, Kok 

1984). 

c. For low degrees of freedom f  and the more complex case of the unknown var-

iance components, the degrees of freedom i   results, in a very good ap-

proximation, that are  (Satterthwaite, 1946, Giesbrecht and Burns, 1985) 

)ˆ(ˆ

ˆ2

)ˆ(

ˆ2

22

4

2

4
















 

Var
i  (33) 

where     



ˆ 
2  ˆ 2( ˆ i)  is the variance of the modified residual i̂  and 

    



ˆ 2( ˆ 
2) Var( ˆ 

2)  the variance of the variance 
  



ˆ 
2 , is being calculated by apply-

ing the low of variance propagation for the estimation of the relationships of 

variance components.3 

                                                      

3. For example, in testing the difference between the mean of two samples, of different and un-
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The values of tau distribution relate to the values of t distribution through the rela-

tion 














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F

F

t

t
 (34) 

Reversing this relation, results in 

22/

2/2/
1

)(

1
 









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





t  (35) 

from which the alternative form of control arises 

  



 i 
ˆ i

ˆ ( ˆ i)
 ,   12

~
1





 




 tt

i

ii  (36) 

This statistical test has been given in this form by Beckman and Trussell (1974), 

Weisberg (1980) and in Greek literature by Dermanis (1987). The quantity i  is 

called internal studentized error, while the   



ti  external studentized error, because it 

can also arise from the relationship 

1

)()(

~
ˆ

~

)
~

(~

~




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iii

i

ii
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q

v
t
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
 (37) 

where the modified residual   



˜ i  and its variance )
~

(~2
}( ii   results as a prediction 

from the solution of the initial linear mixed model )()()()( iiii   vXy  , i.e. 

without the contribution of observation iy  . If we write the matrix M  in the form 


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
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
 (38) 

where )(
ˆ~

i
T
iii yv  βx , then the relations apply 

iiii vm
~~~
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)(
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T
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22
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



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T
iiiiiiiiii mmqv    (39) 

                                                      
known accuracy of their values, the degrees of freedom of t-distribution become according to the 

formula of Satterthwaite )]1(/)1(/[/)//( 2
2
2

4
21

2
1

4
12

2
21

2
1  nnsnnsnsnsv . 
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and 

)(
1
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~

ii
T

iiiii mm 

 mMm ,  )(

1
)()( ii

T
ii 


 XMmxg  (40) 

For uncorrelated observations the external studentized error becomes4 

1

)(

~
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



 v

iii

i
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q

v
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
 (41) 

where )(
ˆ~

i
T
iii yv  βx  is the prediction of error, and 

))  ((ˆˆ)~(~ 1
)(

1
)()(

212
)(
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)(
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T
iiiiiiiiiii mmqv xXMXx 






    (42) 

its variance. 
 
Where a set of observations is tested (the set with index 2, 222 vXy   ), af-

fected each of them by a simple error i , with respect to the other observations 

that are considered to be unmistakable, without errors (to set index 1, 

111 vXy   ), the test can be done either by the results of the simultaneous anal-

ysis of the observations of the two sets, or by the results of the analysis of the first 

set of observations and applying prediction methods for calculating the errors and 

their covariance matrix of the second set. The two methods are equivalent to each 

other, as in the case of one suspicious observation discussed above. The extended 

system of linear equations is written  









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






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1
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1
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1
  

v

v

I

0

X

X

y

y
  (43) 

where the vector 2  contains the errors i  of observations of the set (2), and cor-

responding to the above the following quantities are calculated  

1
2222

1
ˆ ][   WWQ   (44) 

where the matrix 22
11

22 ][   WW  is a submatrix of the inverse 1
W  which corre-

sponds to the observations of the set (2) 

2
1

ˆ2 ]ˆ[ ˆ vMQ 
  (45) 

and  

222
1

22ˆ2
1

ˆ
ˆ[ˆˆˆˆˆˆ     WQQ

TTT
 (46) 

                                                      
4. As it was proven by Beckman and Trussell (1974) and Cook and Weisberg (1982), for the case of 

uncorrelated observations. 
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where 2
1

2 ]ˆˆ vM  are the modified total residuals of the observations being test-

ed, or alternatively if the operations will be done 

)ˆˆ()(ˆ
1

1
11122

1
12

1
1112222 vMMvMMMMξ   TT   (47) 

where 11M , 22M , 12M  are submatrices of M . 
 
In the first case, based on the simultaneous analysis of the observations of both 

sets, the modified total residuals 2̂  are calculated and the test is based on the rela-

tions:  
 
a. For a very large number of degrees of freedom (e.g.    



f 100) or, for known 

accuracy 

2
2

1
222

2

2
 ~ ˆˆ

n
T    W  (48) 

b.  For low degrees of freedom and an unknown reference variance, common for 

all stochastic parameters 

2
,2

2

2
1

2222

22
 ~ 
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ˆˆ

nfn

T

T
n

T 






 W
  (49) 

where 2
, 22 nfnT   is the “generalized” Hotelling distribution, which is a generaliza-

tion of the   



t  distribution in the analysis of many variables, or alternatively 

2
2

2
1

2222

ˆ 

ˆ ˆ

n
T
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
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 ,  
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
    (50) 

c.  For low degrees of freedom and the more complicated case of the unknown var-

iance components 

,

2

2
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2222
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ˆ ˆˆ

n

T

T
n

T
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
W

   (51) 

where the matrix   



ˆ W   results from the iterations in the course of estimating the 

unknown variance components, or alternatively 

2

2
1

2222
ˆ ˆˆ

n
T
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
W

  ,   



,2

22

2
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nF
Tnn

TF


    (52) 

The above   



v  degrees of freedom of the  ,2nF  distribution are calculated by the 

equations (Fai and Cornelius, 1996) 
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where  



 i  denotes the degrees of freedom for each   



i  observation from the set of 2n  

being tested, calculated according to formula (33) and the coefficient     



[vi 2]  indi-

cates that only the terms    



 i 2 are summed.  
 
For the second case, assuming that we want to test the second set of observations 

from the solution of the first set, the test is based on the alternative form of the sta-

tistic 

22 ,2
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 ~ 
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~~

nfn
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F
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F 







ξQξ

 (54) 

where )1(
22

~~
ξξ   is the prediction of the modified residuals of the second set of ob-

servations  

)ˆ~(
~

)ˆ~()(
~

1
1

1112
)1(

2
1

221
1

1112
)1(

2
1

12
1

111222
)1(

2 vMMvMvMMvMMMMξ
  TTT

 

 (55) 

where 12
1

11122222

~
MMMMΜ

 T
 and  

1
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1
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1
11122

1
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~
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~   MGXMXGMMQ TT


  (56) 

their covariance coefficient matrix, and 

1
1

11122 XMMXG  T  (57) 

From the analysis of the first set of observations, the estimates 
)1(̂  of the unknown 

parameters and the coefficient matrix 
̂

Q  of their covariances are given by   

1
1

111
1

1
1

111
)1(  )(ˆ yMXXMX  TT  (58) 

1
1

1
111ˆ )(  XMXQ

T


 (59) 

as well as the prediction of the total residuals of the second set 

)1(
22

)1(
2

ˆ~ Xyv   (60) 

where 11M , 22M , 12M  are the submatrices of M . 
 

It is easy to prove that 2
1

ˆ22
1

~2
ˆˆ~~
vQvξQξ
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v

TT


, where 
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ˆ~ˆ vMMvv

 T   (61) 

and    

TT

v
GXMXGMQ

1
1

1
11122~ )(   (62) 

If the two sets of observations (1) and (2) are uncorrelated with each other, then 

0M 12 , 2222

~
MM   and 

)1(
22

~~
vv    and  TT

v 2
1

1
1

111222~ )( XXMXXMQ
  (63) 

It is proved (Dermanis and Rossikopoulos, 1991) that this statistical test is 

equivalent to the test of so-called stochastic linear hypotheses, an idea introduced 

by Schaffrin (1987). This is also exactly one of statistics derived by Wei (1987) for 

the simpler case of “group-wise collocation” 

  111 uXy   

  222 uXy   (64) 

Large values of the test statistic F  or 2T  for many of the observations do not nec-

essarily indicate the presence of multiple gross errors, especially for the high quali-

ty studies. Very often, they are probably due to modeling errors on the part of the 

deterministic or stochastic parameters, or in covariance model of stochastic param-

eters. Tests for multiple outliers on observations can be performed as described 

above, but their interpretation as gross errors are again not possible for the usual 

high quality of the observations. Such detected outliers may signify also the exist-

ence of model inconsistency between the two sets of observations, those with outli-

ers and those without. 
 
In this case, when the compatibility of two sets of observations is being tested, the 

problem is how the original data set is going to be divided into two subsets. There-

fore, the test should be applied only when a natural separation exists. This is the 

case with prior information from a previous data analysis which is treated through 

the device of "pseudo-observations". Another such case appears when observations 

in a network are to be combined with separate gravity related observations in the 

surrounding area. An example is the incorporation of independent gravity and 

height information with observations in a GPS network, which is necessary for the 

determination of orthometric rather than ellipsoidal heights. 

 

 

4. Conclusions 

It could be said that the above technique of testing could be applied exactly in the 

same manner to the errors 



ˆ , or to the random effects uZe ˆˆ  . But in any case, 
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either the total residuals v̂ , the errors ̂ , or the stochastic parameters û  are tested 

applying the procedure described above, the significance of the new parameters   

is being tested in fact, as in each case the results of the extended equations 

  uZUXy   (65) 

are compared in the same way with the results of the initial equations 

   uZXy  (66) 

Let's see the implementation of statistical testing for the detection of outliers in the 

errors 



ˆ , in the general case where the observations are correlated with each other. 

The modified errors ̂  and their covariance matrix 
̂

Q  are calculated 
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ˆ
1

ˆ  (67) 

where we also took into account that vMQ ˆ ˆ 1 . The estimates of the additional 

parameters and their covariance matrix appear to be 
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If we take into account that 
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then it follows that 
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In the same way the test of the random effects uZe ˆˆ   is based on their modified 

values and their covariance matrix 
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where we have taken the relationship (7) into account, KZWZKQ 
T

u  ˆ . It is 

easy to be proved that 
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 (71) 

where  
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We have taken into account that  1
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1
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1111 )()()()(   T
u

TTTT ZQZZKZWZKZZKZWZKZ   

The following proves to be true 
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where we have accepted that 1
ˆ

1
ˆ )(  

u
T

u
T QZZQZZ . We conclude in the same 

quantity  ˆ  in any case, which turns out to be 

1 1 1 1 1
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In these three cases, there are essentially three alternative forms of the same statis-

tical test: the significance test of the additional parameters  .  
 
Generally, confusion appears on this issue in the international literature. For exam-

ple, if the test of a set iu  of stochastic parameters based on quantity iiiu
T
i uQu ˆ][ˆ 1

ˆ
  

fails, then this does not necessarily indicate an unsuccessful selection of random 

effects parameters or an incorrect selection of their covariance matrix, but may be 

due for example to gross errors that affect an observation or to a wrong selection of 

the covariance matrix for the errors 



 . In the same way, the possible existence of 

outliers in the implementation of statistical test referred to errors 



  cannot be inter-

preted as gross errors in observations. However, one could detect outliers in sto-

chastic quantities iû  by analyzing graphs of these values or of the quantities iê  in 

terms of the sizes they describe, or by analyzing the elements of their covariance 

matrix or the graphs of normalized values )(ˆ/ˆ ii uu  , or one could have a picture of 

the stochastic behavior of stochastic parameters by further analysis of total residu-

als iv̂ . 

 

 

References 

Amiri-Simkooei, A. R. and S. Jazaeri (2013). Data snooping procedure applied to errors-in-

variables models. Stud. Geophys. Geod., 57, 426-441. 

Airy, G. B. (1856). Letter from Professor Airy, Astronomer Royal, to the Editor. Astronom-

ical Journal, 90, 137-138. 

Baarda, W. (1968). A Testing Procedure in Use in Geodetic Networks. Netherlands Geodet-

ic Commission, Vol. 2, Number 5. 

Beckman, R. J. and R. D. Cook (1983). Outlier … s. Technometrics, vol. 25, No. 2, 119 – 

163.  



Residual Analysis and Detection of Outliers in Mixed Linear Models 101 

 

Beckman, R. J. and H. J. Trussell (1974). The Distribution of an Arbitrary Studentized Re-

sidual and the Effects of Updating in Multiple Regression. Journal oft he American Sta-

tistical Association, 69, 199-201.  

Bessel, F. W and J. J. Baeuer (1838). Gradmessung in Ostpreussen und ihre Verbindung 

mit Preussischen und Russischen Dreiecksketten. Berlin: Dümmler. 

Breslow, Ν. Ε. and D. G. Clayton (1993). Approximate Inference in Generalized Linear 

Mixed Models. Journal of the American Statistical Association, March 1993, 9-25. 

Chauvenet, W, (1860). A manual of Spherical and Practical Astronomy (Vol. II, 5th ed.). 

New York: Dover. 

Cook, R. D. and S. Weisberg (1982). Residuals and Influence in Regression. New York: 

Chapman and Hall. 

Dermanis, A. (1987). Adjustment of observations and estimation theory. Editions Ziti (in 

Greek).  

Dermanis, A. and D. Rossikopoulos (1997). Statistical Inference in Integrated Geodesy. 

IUGG XXth General Assembly. Vienna, August 11-24, 1997. 

Dermanis, A. and R. Rummel (2000). Data analysis methods in geodesy. In: A. Dermanis, 

A. Grun and F. Sanso (eds.). Geomatic Methods for the Analysis of Data in the Earth 

Sciences. Springer Verlag, 17-92. 

Edgeworth, F. Y. (1887). On Discordant Observations. Philosophical Magazine, 23, Ser. 5, 

364-375. 

Elston, D. A. (1998). Estimation of denominator degrees of freedom of F-Distributions for 

assessing Wald Statistics for fixed-effect in unbalanced mixed models. Biometrics 54, 

1085-1096. 

Fai, A.H.T. and Cornelius, P.L. (1996). Approximate F-tests of Multiple Degree of Free-

dom Hypotheses in Generalized Least Squares Analyses of Unbalanced Split-plot Ex-

periments. Journal of Statistical Computing and Simulation 54, 363-378. 

Ferguson, T. S. (1961). On the Rejection of Outliers. Proceedings of the Fourth Berkeley 

Symposium on Mathematical Statistics and Probability (Vol.1), University of California 

Press, 253-287. 

Fisher, RA (1918). The correlation between relatives on the supposition of Mendelian in-

heritance. Transactions of the Royal Society of Edinburgh 52 (2): 399–433. 

Fisher, RA (1922). On the Interpretation of χ2 from Contingency Tables, and the Calcula-

tion of P. Journal of the Royal Statistical Society 85 (1): 87–94 

Fisher, RA (1924). On a Distribution Yielding the Error Functions of Several Well Known 

Statistics Proceedings of the International Congress of Mathematics, Toronto, 2: 805 - 

813. 

Giesbrecht, F.G., Burns, J.C. (1985). Two-stage analysis based on a mixed model: Large-

sample asymptotic theory and small-sample simulation results. Biometrics 41, 477 – 

486.  

Glaisher, J. W. L. (1873). On the Rejection of Discordant Observations. Monthly Notices of 

the Royal Astronomical Society, 23, 391-402. 



102 Dimitrios A. Rossikopoulos 

 

Glaisher, J. W. L. (1874). Note on a paper by Mr. Stone “On the Rejection of Discordant 

Observations”. Monthly Notices of the Royal Astronomical Society, 34, 251. 

Gosset, W. S. (1908). The probable error of a mean. Biometrika 6 (1): 1–25 (published un-

der the pen name "Student").  

Gould, B. A. Jr. (1855). On Peirce’s Criterion for the Rejection of Doubtful Observations, 

with Tables for Facilitating its Application. Astronomical Journal, 6, 81-83. 

Harter, H. L. (1978). A chronological annotated bibliography of order statistics (Vol-ume I: 

pre—1950). American Series in mathematical and management sciences. Vol. 7. Amer-

ican Sciences Press, 515 pp. 

Helmert, F. R. (1876). Ueber die Wahrscheinlichkeit der Potenzsummen der Beobach-

tungsfehler und über einige damit im Zusammenhange stehende Fragen. Zeitschrift für 

Mathematik und Physik, 21, 102 - 219. 

Henderson, C. R., O. Kempthorne, S. R. Searle and C. M. von Krosigk (1959). The Estima-

tion of Environmental and Genetic Trends from Records Subject to Culling. Biometrics 

(International Biometric Society) 15 (2): 192–218. 

Kackar, R.N., Harville, D.A. (1984). Approximations for standard errors of estimators of 

fixed and random effects in mixed linear models. Journal of the American Statistical 

Association 79, 853 – 862. 

Kenward, M. G. and Roger, J. H. (1997). Small Sample Inference for Fixed Effects from 

Restricted Maximum Likelihood. Biometrics 53, 983-997. 

Khuri, A. I., T. Mathew and B. K. Sinha (1998). Statistical tests for Mixed Linear Models. 

Wiley, New York. 

Kok, J. J. (1984). On Data Snooping and Multiple Outlier Testing. NOAA Technical Teport, 

NOS NGS 30.  

Krakiwsky, E. and Z. F. Biacs (1990): Least Squares Collocation and Statistical Testing. 

Bull. Geod. 64, 73-87. 

McLean, R. A. and W. L. Sanders (1988). Approximated Degrees of Freedom for Standard 

Errors in Mixed Linear Models. In Proceedings of the Statistical Computing Section, 

American Statistical Association, 50-59. 

Neyman, J. and E. Pearson (1928). On the use and interpretation of certain test criteria for 

purposes of statistical inference: part I. Biometrika 20A, 175–240 

Nobre, J. S. and J. M. Singer (2007). Residual analysis for linear mixed models. Biomet-

rical Journal 49, 863-875. 

Patterson, H. D. and R. Thompson (1971). Recovery of inter-block information when block 

sizes are unequal. Biometrica 58, 545-554.  

Pearson, K. (1900). On the Criterion that a given System of Deviations from the Probable 

in the Case of a Correlated System of Variables is such that it can be reasonably sup-

posed to have arisen from Random Sampling. Philosophical Magazine Series 5, 50 

(302): 157 - 175. 

Pearson, E. and C. Sekar (1936). The Efficiency of Statistical Tools and a Criterion for the 

Rejection of Outlying Observations. Biometrica, 28, 308-320. 



Residual Analysis and Detection of Outliers in Mixed Linear Models 103 

 

Pope, A. J. (1976). The Statistics of Residuals and the Detection of Outliers. NOAA Tech-

nical Report, NOS 65, NGS 1.  

Peirce, B. (1852). Criterion for the Rejection of Doubtful Observations. Astronomical Jour-

nal, 2, 161-163. 

Rider, P. R. (1933). Criteria for Rejections of Observations. Washington University Studies 

– New Series, Science and Technology, 8. 

Rossikopoulos, D. (1992). Surveying Networks and Computations. Editions Ziti (in Greek). 

Rossikopoulos, D. (2015). Craps, meridians, genes and geographies. A brief history of sta-

tistics. In special issue for Emeritus Professor Myron Myridis: Arvanitis et al. (Eds.). 

Cartographies of Mind, Soul and Knowledge, Aristotle University of Thessaloniki, 134-

152 (in Greek). 

Rossikopoulos, D. (2017). Statistical testing for mixed linear models. In special issue in 

Honor of the Memory of Professor Ioannis Paraschakis: Fotiou et al. (Eds.). Living with 

GIS, Aristotle University of Thessaloniki, 9-40 (in Greek). 

Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance compo-

nents. Biometrics Bulletin 2 (6), 110 – 114.  

Saunders, S. A. (1903). Note on the Use of Peirce’s Criterion for the Rejection of Doubtful 

Observations. Monthly Notices of the Royal Astronomical Society, 63, 432-436. 

Schaffrin, Β. (1987). Less Sensitive tests by introducing stochastic linear hypothesis. Proc. 

2nd Inter. Tampere Conference in Statistics. Finland, June 1987. 

Schaffrin, Β. (1988). Tests for random effects based on homogeneously linear predictors. 

Workshop on Theory and Practice in Data Analysis, 19-21 August, Berlin.  

Schaffrin, B. and Y. Bock (1994): Geodetic deformation analysis based on robust in-verse 

theory. Manusscripta geodaetica, 19, 31-44. 

Seely, J. (1970). Linear spaces and unbiased estimation. Ann. Math. Statist. 41, 1725-1734. 

Seely, J. (1970). Linear spaces and unbiased estimation – an application to the mixed linear 

model. Ann. Math. Statist. 41, 1735-1748. 

Selvin, H. C. and A. Stuart (1966). Data dredging procedures in survey analysis. The Amer-

ican Statistician, 20(3), 20-23. 

Singer, J. M., J. S. Nobre and F. M. Rocha (2013). Diagnostic and treatment for linear 

mixed models. Proceedings, 59th ISI World Statistics Congress, 25-30 August 2013, 

Hong Kong (Session CPS203), 5486-5491. 

Srikantan, K. S. (1961). Testing for Single Outlier in a Regression Model. Sankhya, Ser. A, 

23, 251-260.   

Stone, E. J. (1868). On the Rejection of Discordant Observations. Monthly Notices of the 

Royal Astronomical Society, 28, 165-168. 

Thompson, W. (1935). On a criterion for the rejection of observations and the distribution 

of the ratio of deviation to sample standard deviation. Annals of Mathematical Statistics, 

6.  

You C., S. Müller and J. T. Ormerod (2016). On generalized degrees of freedom with ap-



104 Dimitrios A. Rossikopoulos 

 

plication in linear mixed models selection. Stat. Comput. 26, 199-210.  

Wald, Α. (1943). Tests of Statistical Hypotheses Concerning Several Parameters When the 

Number of Observations is Large. Transactions of the American Mathematical Society, 

54. 

Wei, M. (1987): Statistical Problems in Collocation. Manuscripta Geodaetica, 12, 282-289. 

Weisberg, S. (1980). Applied Linear Regression. Wiley, New York.  

Wintlock, J. (1856). On Professor Airy’s Objections to Peirce’s Criterion. Astronomical 

Journal, 4, 145-147.  

Witkovsky V. (2012). Estimation, testing and prediction regions of the fixed and random 

effects by solving Henderson’s mixed model equations. Measurement Science Review, 

Vol. 12, No. 6, 234-248. 

 


